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constant a0 is in Å, B is the bulk modulus in G Pa. . . . . . . . . . . . . . 41

3.3 Optimized lattice constant in Å for Ga centered nanocrystals. . . . . . . . 46

3.4 Calculated lattice constants in units of Å of GaN, GaP and GaAs using
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Chapter 1

Introduction

Semiconductors have been the workhorse of modern day electronics from the fifties. How-

ever still the interest in these materials continues as new phenomena are been discovered

in these materials. One such example are dilute magnetic semiconductors where a small

concentration of transition metal doping in conventional semiconductors results in mag-

netism, sometimes even at room temperature. This has thrown open an entire new branch

of physics - spintronics wherein one uses the spin degree of freedom of the electron in ad-

dition to the charge to construct new generation devices. Another area that has received

a lot of interest are nanocrystalline semiconductors. The properties of these nanoma-

terials strongly depends on the shape and size and are quite different from their bulk

counterparts. An understanding of the electronic structure of these systems will provide

insights into the interesting properties observed in them. In this thesis we have studied

the electronic structure of semiconductors both in the bulk and the nanoscale limit using

ab-initio methods. For better understanding of the microscopic origin of certain phenom-

ena we have also constructed model Hamiltonians which we use to discuss the phenomena.

Chapter 2 introduces and discuss in some detail the theoretical frameworks which we

used to carry out electronic structure calculations in this thesis.

With recent advances in computational power, theory and specifically ab-initio density

functional theory have played an important role in the design of materials with tailor-made

properties. An important class of materials that have received considerable attention are

the nitrides. Alloys of GaInNAs have been recognized as important materials for the

development of long wavelength solid-state lasers emitting within the fibre-optic commu-

1
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nication wavelength window (1.3 to 1.55 µm) [1]. GaInNAs semiconductor quantum dots

with dilute amount of nitrogen substitutional impurities are promising candidates for the

active region in the next generation of optoelectronic devices [2]. Transition metal doped

GaN has been found to exhibit ferromagnetism at room temperature [3] which could make

these materials useful in the emerging area of spintronics. Calculations for the systems

of interest in the context of the nitrides, dilute nitrides as well as quantum dots, are

usually performed for periodic systems considering large and representative supercells.

These are computationally demanding within an ab-initio approach. It is therefore useful

to have accurate and reasonable approximations which decrease the computational cost.

The role of the Ga 3d states in determining the physical properties of GaN has received

considerable attention over the past two decades. Unlike in the case of other Ga-V semi-

conductors, one finds that in GaN the Ga 3d core states are not chemically inert and the

valence band has considerable Ga d character [4]. In Chapter 3 we studied the role of Ga

3d states in determining the properties of bulk as well as nanocrystals of GaN using pro-

jected augmented wave (PAW) potentials. PAW potentials give us the freedom to toggle

between using the Ga 3d in the valence and in the core and allows us to simultaneously

examine the modifications in the electronic properties. A significant contribution of the

Ga d states in the valence band is found to arise from interaction of Ga 4d states with the

dominantly N p states making up the valence band. The errors in the calculated lattice

constant arising from not treating the Ga 3d states as a part of the valence are found to

be similar, ∼ 1%, for bulk as well as for nanocrystals of GaN.

The positions of the semicore Ga d levels in GaX semiconductors (X = N, P, and

As) are underestimated in density functional calculations using either the local density

approximation LDA or the generalized gradient approximation GGA for the exchange

functional. Correcting for this inaccuracy within LDA+U calculations with an on-site

Coulomb interaction U on the semicore d-states results in a modest enhancement of the

band gap. The belief for the opening up of band gap has been that the t2 states of the

semicore d states interact with the states comprising the valence band maximum with the

same symmetry pushing them up [5]. Recently Janotti et al. [6] examined the mechanism

of the increase in the band gap with a U on the semicore states. They [6] found shifts

in both valence band maximum and conduction band minimum and thus questioned the
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earlier model [5]. The shift in the conduction band minimum was understood to be due

to the modified screening effects arising from the a U on the semicore states. We re-

examined this proposition and we show that this modest enhancement of the band gap

energy comes from the movement of the valence band maximum alone, thus not affecting

the conduction band states. Further, the localization of the charge on Ga d states with

U leads to a regulation of charge on Ga. This yields a shift of 1-2 eV of the core levels

on the Ga atom while the anion core levels remain unchanged.

Advances in growth techniques have made it possible to fabricate perfect single crystal

layers of one material over another by epitaxy. These materials known as heterojunctions

have the advantage of giving rise to high quality materials, in addition to suggesting the

possibility of changing the properties of the materials over wide limits as a function of

the layer thickness which can be varied from a fraction of atomic layer to hundreds of

micrometers. An important class of materials with wide ranging technological application

that have emerged are those in which confinement leads to properties entirely different

from the bulk. The development of the physics and technology of semiconductor het-

erostructures has resulted in remarkable changes in our everyday life. Heterostructure

electronics is widely used in many areas. In order to have a better handle on designing

materials, it is useful to have a good understanding of the microscopics. A key parameter

that determines the functionality of the semiconductor heterojuction device is the band

offsets between the materials involved. It is an established fact that in isovalent hetero-

junctions of lattice-matched semiconductors the band offset depends only on the bulk

properties of the two materials, while at heterovalent heterojunctions it crucially depends

on the interfacial strain and the other microscopic details. Thus the problem reduces to

determining the role of the microscopic interactions in the bulk electronic structure of the

materials making up the heterostructure. In this chapter we reexamine the problem of the

origin of the valence band offsets in the common anion lattice-matched semiconductors

such as GaX/AlX where X= N, P and As. Our calculated valence band offset between

the common anion pairs of semiconductors GaX/AlX (X=N, P and As) was found to

be 0.72, 0.48 and 0.50 eV respectively. This is in agreement with other estimates [7] as

well as other experimental estimates [8]. An early common-anion theory [9] suggested

that ∆Ev(AX/BX) between two materials with the same anion type should be zero, but
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the observed large band offsets have later been associated with a p-d interaction present

in the GaX [5], having active semicore Ga d states in contrast to AlX. The role of p-d

interactions in determining the valence band offset was studied for the first time. Quan-

titative estimates were obtained starting from a microscopic Hamiltonian found to give

good description of the band structure of GaX and AlX semiconductors. Our studies

show that this interaction cannot alone account for the large valence band offsets. Our

studies reveal that the important interaction that bring about this observed valence band

offset is from the p-p (cation-p and anion-p) interactions.

In the case of heterostructures the layer thicknesses and chemical composition can

be controlled over a length scale comparable to or smaller than the electron de Broglie

wavelength. This results in novel quantum effects related to size. Quantum well structures

can be designed to perform special functions that are the core of many modern quantum

devices. In Chapter 4 we considered GaAs/AlAs superlattices, where we studied the type

of band alignment and the nature of the valence band maximum and conduction band

minimum wavefunction envelope in different cases by changing the GaAs and AlAs layer

thickness. We observed a transition of the superlattice from a type-II to type-I when the

GaAs well thickness was varied and the critical thickness at which this occurs was found

to be around 20 Å. This critical thickness is slightly less than the thickness of 25 Å found

by pseudopotential and tight binding approaches [10, 11]. Combining the techniques of

photo-luminescence and photo-luminescence excitation spectroscopy K. J. Moore et al.

[12] observed that for the fixed GaAs thickness at 25 Å the band alignment shows type-II

when the AlAs thickness is greater than 15 Å while for AlAs thickness less than 10 Å

they observed a type-I behavior. Studying the other limit where few AlAs is sandwiched

between the GaAs layers we see that the superlattice is always type-I. Our studies on the

ground state wavefunction of the holes, agrees quite well with the nature of the ground

state wavefunction one expects from a particle in a potential well problem while the ground

state wavefunction of the electrons deviates from the particle in a potential well problem

for certain cases. In this chapter we also determine the shifts of the conduction band

minimum of semiconductor nanocrystals as a function of size from ab-initio calculations,

where confinement of carriers happens in all the three directions. The method has been

applied to CdSe as well as GaAs and the shifts determined. A monotonic decrease is
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found as a function of particle size, as expected. However, the most unusual aspect of

our result is that the conduction band bottom approaches bulk-like values for the largest

CdSe particles that we have studied here in contrast to expectations from other empirical

theories [13, 14, 15].

Alloys at the dilute limit should show strong valence band bowing effects, and transition

metal doping in dilute alloys has been suggested as a possible route to enhance ferromag-

netic stability [16]. The basic idea that one aims to exploit here is to use semiconductors

with band edges energetically closer to the Mn 3d levels. This increases the hybridization

between the host anion p states and the Mn d states. The increased Mn character of the

holes results in a deeper acceptor level in the band gap, thus the ferromagnetism-mediating

holes are more localized. Hence the competition is between delocalization and increased

magnetic character and the question is how does the Tc evolve. Recent experiments [17, 18]

have looked at the dilute limit of Ga1−xMnxAs1−yPy and Ga1−xMnxAs1−yNy with y ∼
0.01-0.04. They observed a strong decrease in Tc with increasing y even at this dilute

limit. In Chapter 5 we have examined these materials and have found that alloy scatter-

ing destroys the ferromagnetic stability in this limit. The role of the impurity potentials

and the role of strain in the modified ferromagnetic stability has been identified for the

first time in these systems. The Curie transition temperatures were evaluated within a

mean field approximation.

Semiconductor nanocrystals have been intensively studied in recent times because of

the dependence of their properties on nanocrystal size, an effect which has tremendous

technological implications. In Chapter 6 we studied the size dependence effect on the

lattice constant of various semiconductor nanocrystals. All atoms at the surface would

have broken coordination, while the interior having a bulk like coordination. As a result

bonds at the surface would be shorter compared to the interior. These nanocrystals are

termed as unpassivated nanocrystals. Experimentally the samples are usually passivated

by organic molecules and since carrying out an ab-initio calculation of this real situa-

tion is computationally very expensive, we use hydrogens or pseudo-hydrogens [19] as the

passivants. In our studies we found that even though these passivated nanocrystals at-

tain an average bond-length very close to the bulk-like bond-length values for very small

nanocrystals sizes (∼ 20 Å diameter) there exist deviation in the bond-length as a function
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of depth from the surface, with the largest deviation found at the surface. In the absence

of passivant, experimentally this can be thought of the situation where the nanocrystals

are passivated with weak passivants, we see that the nanocrystals shows larger deviation

in the average bond-length values from the bulk-like bond-length values. These results

have implication on the experimental studies where one might have different types of pas-

sivants and the role played by the passivants is strongly reflected on the average lattice

constant of the nanocrystal. We also studied the effect of surface stoichiometry on the

average equilibrium lattice constant of nanocrystals and we show that different growth

condition could result in similar sized nanocrystals with different average equilibrium lat-

tice constant. In this chapter we also focused on the modification of the bulk modulus of

semiconductor nanocrystals with size. Experimental studies on semiconductor nanocrys-

tals have been found to have an enhanced bulk modulus compared to values for the bulk

[20, 21, 22]. As one does not always have a homogeneous distribution of particles it is

difficult to study the renormalization of the mechanical properties experimentally. In

this context theoretical calculations which can simulate the ideal situation would provide

valuable insight into the modifications as a function of size. This class of materials was

examined to see if there was a size dependence of the bulk modulus. A phenomenological

law was derived which independently gets the bulk limit accurately.

This led us to the next problem of a choice of suitable passivant in binary nanocrystals.

Experimental studies have shown the importance of surface stoichiometry in optimizing

the optical properties of nanocrystals. In Chapter 7 we examined whether it was pos-

sible during growth to have only one type of atoms at the surface. In the absence of

any passivants one finds the existence of mid gap states which is as a result of the broken

coordination at the surface. Now in the presence of passivants one finds that these surface

states are moved into the valence band / conduction band by ∼ 0.5 eV or more. This

can happen in two ways. The first via a surface reconstruction and the second via the

interaction of the surface atoms with the passivants. The pseudo-hydrogens here corre-

sponds to the passivants used in the experiment and in our studies we find that they

interact strongly with the surface atoms. We find the binary nanocrystals with just one

type of the atoms at the surface to be strongly stabilized in the presence of passivation. A

strong role was found to be played by the passivating ligands in determining the surface
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structure. While the conventional belief is that a passivant prevents agglomeration of

nanocrystals and saturates dangling bonds, here it dons the new role of being able to

control the surface stoichiometry.

A key aspect of nanocrystals that have been intensively studied in recent times are their

optical properties. Bulk silicon is optically inactive. Efforts have been made to look for

other forms of silicon which might be optically active. Routes that have been taken include

quantum confinement of Si between SiO2 layers [23], porous silicon [24] as well as quantum

dots / nanosized particles of Si [25]. In Chapter 8 we went on to examine whether similar

sized silicon particles with different shapes have the same physical properties and whether

silicon may be rendered optically active by playing with the shape of the nanocrystals

where one also has the effect of broken translation symmetry. In this chapter we also

studied the tuning of the dopant emission in Mn2+-doped CdS nanocrystals. Recent

experimental studies [26] showed that a controlled tuning of Mn2+ d-emission color from

Mn2+-doped CdS nanocrystals, in the range of yellow to red by making slight changes in

the reaction temperature was possible. We carried out ab-initio calculations and determine

the d-d transition energies for the Mn2+ ion residing at different location in the CdS

nanocrystal. Our studies show that the Mn2+ ions residing at surface/sub-surface regions

of the nanocrystal experience a different crystal field compared to those residing at the

core and thus giving rise to different emission energies. We find that the lower energy

emissions is from the Mn2+ ions situated in the perturbed environments, namely near the

surface/sub-surface regions of the nanocrystal. With increase in reaction temperature the

particle size was found to increase [26] and as a result of this one has a smaller surface

to bulk ratio leading to higher probability of Mn2+ incorporation in the interior of the

nanocrystal than on the surface and thus leading to experimentally observed shift of the

emission peak towards higher energies [26].
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Chapter 2

Density Functional Theory (DFT) way of solving

quantum many body problem

2.1 The many-particle Hamiltonian

Atoms, molecules, clusters or solids, is a collection of heavy, positively charged particles

(nuclei) and lighter, negatively charged particles (electrons). If we have N nuclei, we

are dealing with a problem of N+ZN electromagnetically interacting particles. This is a

many-body problem, and system is described by the many-particle Schröginger equation

of the form HΨ(R, r) = EΨ(R, r). The exact many-particle Hamiltonian for the system

is :

H = −
∑

i

h̄2

2me
∇2

ri
−

∑

I

h̄2

2MI
∇2

RI
−

∑

i,I

ZIe
2

|RI − ri|
+

∑

i>j

e2

|ri − rj|
+

∑

I>J

ZIZJe
2

|RI −RJ |
(2.1)

The mass of the nucleus at RI is MI , the electrons have mass me and are at ri. The

first term is the kinetic energy operator for the electrons, the second for the nuclei. The

last three terms describe the Coulomb interaction between electrons and nuclei, between

electrons and other electrons, and between nuclei and other nuclei. To solve this problem

exactly is a very difficult issue. In order to find acceptable approximate eigenstates, we

will need to make approximations at different levels.

The first step towards the simplification of the above equation is the Born-Oppenheimer

(B-O) approximation(1927)[1] : since ions are much heavier than electrons ((me/MI) ∼

10
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(1/1836) for H atom), they move much slower compared to electrons and the electrons

respond instantaneously to any ionic motion. In essence the electronic and the ionic

degrees of freedom can be decoupled and the electronic properties can be calculated by

assuming that the ions are fixed to a particular configuration. Following this approxima-

tion, the kinetic energy of ions can be neglected and the ion-ion interaction (last term

in Eqn. (2.1)) is assumed to be constant. The constant term, called Madelung energy,

is calculated classically. So under B-O approximation, the many-body Hamiltonian for a

system of N interacting electrons moving in the field of fixed ion cores, takes the form

H = −
∑

i

h̄2

2me
∇2

ri
−

∑

i,I

ZIe
2

|RI − ri|
+

∑

i>j

e2

|ri − rj|
(2.2)

2.2 Single-particle approximation

Even after this simplification, it represents a very complicated many-electron eigen value

problem and further approximation is needed to solve it. Efforts have been put, there-

fore, to develop an effective single-particle picture, in which the system of interacting

electrons can be mapped into a system of non-interacting quantum mechanical particles

that approximates the behavior of original system. Two distinct approaches have been

put forward in this direction: wave function approach and density functional theory.

2.2.1 Wave function approach

Hartree (1928) first expressed the many-body wave function as a product of single-electron

functions {φi(ri)} as ψH(r1, r2, . . . , rN) = φ1(r1)φ2(r2) . . . φN(rN) and solved, numerically,

the equation for each electron moving in a central potential due to other electrons and

the nucleus [2]. This simplest approximation can only take into account the electron-

electron Coulomb repulsion in a mean-field way, neglecting the exchange and correlation

properties completely. The next level of sophistication was then introduced by Fock

(1930) [3], incorporating the antisymmetric character of electronic wave function in terms
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of Slater determinant[4]

ψHF =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) φ1(r2) . . . φ1(rN)

φ2(r1) φ2(r2) . . . φ2(rN)
...

...
...

φN(r1) φN(r2) . . . φN(rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.3)

Application of the variational principle shows that such one-electron wave functions

satisfy the Hartree-Fock (H-F) equations like

[

− h̄2

2me

∇2
ri

+ Vion(ri) + V H
i (ri) + V X

i

]

φi(ri) = ǫiφi(ri) (2.4)

with

V H
i (ri) = e2

occ
∑

j

∫ |φj(rj)|2
|ri − rj |

drj (2.5)

as the Hartree potential and the exchange potential is given by

V X
i φi(ri) = −

occ
∑

j

φj(ri)
∫

φ∗
j(rj)

e2

|ri − rj|
φi(rj)drj (2.6)

The screening potential includes both Hartree and exchange terms. The exchange term

V X
i is difficult to derive in practice because it is non-local and related to the interaction

between all electrons in the system. Consequently, the Hartree-Fork approach has a highly

computational cost and is therefore restricted to small systems.

In agreement with the variational principle, the Hartree-Fock energy EHF
0 is higher

than the exact ground state energy Eexact
0 of the many body system and the difference

Eexact
0 - EHF

0 is called the correlation energy. In spite of the importance and achievements

of the Hartree-Fock approximation, corrections beyond it are often considered due to the

fact that a single determinantal state, even with the best possible orbitals, remains in

general a rather poor representation of the complicated ground state wave function of a

many-body system. Therefore, methods like configuration interaction (CI) approach have

been developed by quantum chemists, which consider a linear combination of different

determinantal states to improve the situation. However, such approach becomes quickly

computationally prohibitive as the system size grows.
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2.2.2 Density functional theory

Hohenberg and Kohn proposed the Density Functional Theory (DFT) [5, 6] to deal with

many-body system problems more efficiently. The formulation of DFT applies to any

system of interacting particles in an external potential Vext(r). The main result of DFT

is that the ground state properties of a many electron system are uniquely determined by

its electron distribution. In other words, all ground state properties of the many electron

system are functional of its ground state electron distribution. When the ground state

electron distribution of the many electron system is determined, its external potential is

also uniquely determined.

In DFT one ignores the precise details of the many-body wave function ψ(r1, r2, . . . , rN)

and takes the density of electrons in the system ρ(r) = N
∫

ψ∗(r, r2, ...., rN)ψ(r, r2, ...., rN)

dr2dr3....drN as the basic variable. This is a huge simplification, since the many-body wave

functions need not to be explicitly specified, as is in case of Hartree and Hartree-Fock

approximations. Thus, instead of starting with a drastic approximation for the behav-

ior of the system, one can develop the approximate single-particle equations in an exact

manner, and then introduce approximations as needed. Also it gives huge simplification

by replacing the complex object like wave-function which depends on the positions of all

the N electrons by electron density which depends only on single position.

Basic theorems of DFT and Kohn-Sham equation

Density functional theorem can be expressed in terms of two basic theorems:

Theorem I: For a system of interacting particles in an external potential Vext(r), the

potential Vext(r) is determined uniquely, up to an additive constant, by the ground state

density. This defines a one-to-one correspondence between an external potential Vext(r)

and the density ρ(r). Since external potential determines the wave function, the wave

function must be a unique functional of density. Therefore, for a given ground state

density, all properties of the system are completely determined.

Theorem II: If T represents the kinetic energy and U the electron-electron interaction,

then the expression, F [ρ(r)] = 〈ψ|T +U |ψ〉 must be a universal functional of the density,
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since the kinetic energy and the interaction energy are functional of density only. From

this considerations, we conclude that the total energy of the system is a functional of the

density and is given by,

Ev[ρ(r)] = 〈ψ|H|ψ〉 = F [ρ(r)] +
∫

Vext(r)ρ(r)dr (2.7)

The Hohenberg-Kohn variational theorem states that if the functional Ev[ρ(r)] is varied

with respect to ρ(r), then Ev[ρ0(r)] takes the lowest value, corresponding to the ground

state, with the correct ground state density ρ0(r), i.e. Ev[ρ0] ≤ Ev[ρ].

Now to reduce the expression (2.7) to a single particle equation, one can write the

universal functional as

F [ρ] = TS[ρ] +
e2

2

∫

ρ(r)ρ(r′)

|r − r′| drdr
′ + Exc[ρ(r)] (2.8)

where TS[ρ] is the kinetic energy of the non-interacting electrons with density ρ(r), second

term is the classical mean-field inter-electron Coulomb (Hartree) energy ECoulomb, which

we separate out from the electron-electron interaction term in F and the third term Exc =

(〈T 〉 - TS[ρ] + 〈U〉 - ECoulomb ) is the non-classical many-body exchange-correlation energy

functional. Therefore the ground-state energy functional in the Kohn-Sham approach is

EKS[ρ] = TS[ρ] +
∫

Vext(r)ρ(r)dr +
e2

2

∫

ρ(r)ρ(r′)

|r− r′| drdr
′ + Exc[ρ(r)] (2.9)

There are three major problems in evaluating the functional EKS[ρ]: (i) one needs a

method of self-consistently evaluating the correct ground state charge density ρ(r), (ii)

evaluation of TS[ρ] given only ρ(r) cannot be done straightforwardly as there is no in-

formation on wave functions, and (iii) the functional Exc[ρ] remains unknown and must

therefore be represented in some simple and sufficiently accurate form.

These difficulties were resolved by Kohn and Sham (1965). The minimization of EKS is

carried out subject to the constraint of normalized density
∫

ρ(r)dr = N . Application of

the variational principle of the Kohn-Sham theory requires that for the ground state

δ

δρ(r)
{EKS[ρ] − µN} = 0 (2.10)

µ is the Lagrange multiplier. Using Eqn. (2.9), one gets,

δTS[ρ]

δρ(r)
+ VKS(r) = µ (2.11)
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where

VKS(r) = v(r) + VH(r) + Vxc(r) = v(r) +
∫

ρ(r′)

|r − r′|dr
′ +

δExc

δρ(r)
(2.12)

Kohn and Sham showed that solving Eqn. (2.11) is equivalent to solving the following set

of single-particle Schrödinger-like equations for the variational wave-functions of fictitious

non-interacting electrons

[

− h̄2

2me
∇2 + VKS(r)

]

φi = ǫiφi (2.13)

where φi and ǫi are the single-particle wave-functions and eigenvalues, respectively, such

that ρ(r) =
∑

i

|φi(r)|2. The Eqn. (2.13), therefore, represents the set of Kohn-Sham

self-consistent field equations.

The first two difficulties outlined above are now resolved. Firstly, the ground-state elec-

tronic charge density is obtained through the self-consistent solution of Eqn. (2.13).

Secondly, once the self-consistency is reached, TS[ρ] is calculated as

TS[ρ] =
∑

i

〈φi| −
h̄2

2me

∇2|φi〉 =
∑

i

ǫi −
∫

VKS[ρ]ρ(r)dr (2.14)

Exchange-correlation functional

As mentioned earlier, the third difficulty with the application of DFT is that the exact

form of Exc[ρ] is unknown and it’s a great challenge in DFT. It is to be noted that this

exchange-correlation energy contains — (i) kinetic correlation energy, which is the dif-

ference in the kinetic energy functional between the real and the non-interacting system,

(ii) the exchange energy, which arises from the requirement of antisymmetric nature of

fermions, (iii) Coulombic correlation energy, which arises from the inter-electronic repul-

sion and (iv) a self-interaction correction.

Two levels of approximations have been suggested to estimate Exc[ρ]: local density approx-

imation (LDA) and generalized gradient approximation (GGA). They are very successful

in predicting most of the material properties and below we discuss them briefly.

The local density approximation (LDA)
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In 1965, W. Kohn and L. J. Sham proposed the local density approximation (LDA)

[6] in order to deal with the exchange correlation energy. They supposed that there exist

the exchange correlation energy density in the many-electron system, and the exchange

correlation energy of a point in the space of the system is only related to the electron

density of that point.

In this approximation it is assumed that the electronic charge density in the system cor-

responds to that of a homogeneous electron gas and the functional Exc[ρ] is approximated

as

ELDA
xc [ρ(r)] =

∫

ρ(r)Exc[ρ(r)]dr, (2.15)

where Exc[ρ] is the exchange plus correlation energy per electron in a homogeneous electron

gas with electron density ρ(r). The functional derivative of ELDA
xc gives the exchange-

correlation potential within LDA,

V LDA
xc =

δELDA
xc

δρ
= Exc [ρ(r)] + ρ(r)

∂Exc[ρ]

∂ρ
. (2.16)

The contribution of exchange to the total energy is ELDA
x [ρ(r)] = −3

4
e2

(

3
π

)1/3
[ρ(r)]1/3

(one can obtain this general form of exchange part starting from the solution of a uniform

system [7]). For the correlation part, a number of expressions have been given. In all

these expressions, the exchange-correlation functional is written as

ELDA
xc [ρ(r)] =

∫

(Ex[ρ(r)] + Ec[ρ(r)])ρ(r)dr (2.17)

where the pure exchange energy Ex[ρ] is the expression as given above. The expressions for

correlation energy are usually given in terms of Wigner-Seitz radius, rs = (3/4πρ(r))1/3.

The expression proposed by Wigner [8] extrapolates between known limits in rs, obtained

by series expansions. The parameters that appear in the expression proposed by Hedin

and Lundquist [9] are determined by fitting to the energy of the uniform electron gas,

obtained by numerical methods at different densities. A similar type of expression was

proposed by Perdew and Zunger [10], which captures the more sophisticated numerical

calculations for the uniform electron gas at different densities performed by Ceperly and

Alder [11]. The common feature in all these approaches is that Exc depends on ρ(r) in a

local fashion, that is, ρ needs to be evaluated at one point in space at a time. For this
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reason they are referred to as the Local Density Approximation to Density Functional

Theory. This is actually a severe restriction, because even at the exchange level, the

functional should be non-local, that is, it should depend on r and r′ simultaneously. It is

a much more difficult task to develop non-local exchange-correlation functionals.

The generalized gradient approximation (GGA)

In LDA, the exchange correlation energy density is a function of the local electron

density, whereas local variations of the electron density are also important in elements

condensed states. Generalized gradient approximation (GGA) was developed to improve

accuracy of LDA. In a generalized gradient approximation, the functional depends on the

density and its gradient,

EGGA
xc [ρ] =

∫

ρ(r)Exc(ρ(r), |∇ρ(r)|)dr (2.18)

Several GGA functionals like Perdew-Wang 1991 [12] and Perdew, Burke and Ernzerhof

(PBE) [13] are the most popular. In comparison to LDA, GGA’s tend to improve total

energies, atomization energies, energy barriers and structural energy differences [13], while

retaining all the correct features of LDA. GGA’s expand and soften bonds, an effect that

sometimes corrects and sometimes over-corrects the LDA prediction. Typically, GGA’s

favor density inhomogeneity more than LDA does.

2.3 General band-structure methods

To solve the single-particle Kohn-Sham Eqn. (2.13) and to obtain the eigenvalues (band

structure) and eigenfunctions, a number of methods have been introduced. These methods

are based on either k-space approach or real space approach and are applicable to both

finite systems such as molecules or clusters as well as extended systems such as solids.

For periodic solids, one usually exploits the translational periodicity and handles the

solutions in k-space. For finite sized molecules and clusters also, k-space approach is used

by constructing super-cell which imposes artificial periodicity in the system.
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2.3.1 Basis sets

Regardless of whether it is k-space approach or real-space approach, one has to choose

an appropriate basis set to expand the single-particle wave-functions and depending on

the choice of basis functions, different schemes, therefore, can be broadly grouped into

two categories: (i) methods using energy independent basis sets or fixed basis sets, like

tight binding method using linear combination of atomic orbitals (LCAO) type basis[14],

orthogonalized plane wave (OPW) method using plane waves orthogonalized to core states

as the basis set[15], pseudopotential method using plane wave basis[16], and (ii) methods

using energy dependent basis set, like cellular method[17], augmented plane wave (APW)

method[18] and the Korringa-Kohn-Rostocker (KKR) Green’s function method[19], which

use partial waves as basis set. In this thesis, we mainly used pseudopotential method

along with plane wave basis, as implemented in the Vienna ab initio simulation package

(VASP)[20]. We also used full potential (L)APW+lo method, as implemented in the

WIEN2k code [21] and also tight binding analysis in certain cases for better microscopic

understanding of the problem. Structural optimization is performed using conjugate

gradient or quasi-Newtonian dynamics.

2.3.2 Pseudopotential Method

It is well known that electrons in the outermost shell of atoms, the so called valence

electrons, actively participate in determining the most of the chemical and physical prop-

erties of molecules and solids. This leads to the idea behind the pseudopotential theory.

Here we will develop the basic concept of pseudopotential by a simple transformation of

single-particle Kohn-Sham equation (2.13) for an atom where core and valence states are

denoted as ψc and ψv respectively. A new set of single-particle valence states φ̃v can be

defined as

ψv(r) = φ̃v +
∑

c

αcψ
c(r) (2.19)

where αc are determined from the condition that ψv and ψc are orthogonal to each other

i.e 〈ψv|ψc〉 = 0 which gives αc = - 〈ψc|φ̃v〉. Eqn. (2.13) then can be manipulated, with
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the help of Eqn. (2.19), to

[

TS + VKS +
∑

c

(ǫv − ǫc)|ψc〉〈ψc|
]

φ̃v = ǫvφ̃v (2.20)

with ǫc as the eigenvalue of the core state. Considering VR =
∑

c

(ǫv − ǫc)|ψc〉〈ψc| which

is a repulsive potential operator (as ǫv > ǫc, making ǫv - ǫc positive), Eqn. (2.20) can be

written as

[TS + VPS] φ̃v = ǫvφ̃v (2.21)

The operator

VPS = VKS +
∑

c

(ǫv − ǫc)|ψc〉〈ψc| (2.22)

represents a weak attractive potential, denoting the balance between the attractive po-

tential VKS and the repulsive potential VR, and is called a pseudopotential. While the

new states φ̃v obey a single-particle equation with a modified potential, but have the same

eigenvalues ǫv as the original valence state ψv, are called pseudo-wavefunctions. These

new valence states project out of the valence wavefunctions any overlap they have with

the core wavefunctions, thereby having zero overlap with the core states. In other words,

through the pseudopotential formulation, we have created a new set of valence states,

which experience a weaker potential near the atomic nucleus, but the proper ionic po-

tential away from the core region. Since it is this region in which the valence electrons

interact to form bonds that hold the solid together, the pseudo-wavefunctions preserve all

the important physics relevant to the behavior of the solid.

Since then several methods have been used to generate more accurate as well as more effi-

cient pseudo-potentials, keeping the basic principles same. In norm-conserving pseudopo-

tential [22], the all electron (AE) wave function is replaced by a soft nodeless pseudo (PS)

wave function, with the restriction to the PS wave function that within the chosen core

radius the norm of the PS wave function have to be the same with the AE wave function

and outside the core radius both the wave functions are just identical. Good transferabil-

ity of constructed pseudopotential requires a core radius around the outermost maximum

of the AE wavefunction, because only then the charge distribution and moments of the

AE wavefunctions are well produced by the PS wavefunctions. Therefore, for elements

with strongly localized orbitals like first-row, 3d and rare-earth elements, the resulting
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pseudopotentials require a large plane-wave basis set. To work around this, compromises

are often made by increasing the core radius significantly beyond the outermost maximum

in the AE wave-function. But this is usually not a satisfactory solution because the trans-

ferability is always adversely affected when the core radius is increased, and for any new

chemical environment, additional tests are required to establish the reliability of such soft

PS potentials. This was improved by Vanderbilt[23], where the norm-conservation con-

straint was relaxed and localized atom centered augmentation charges were introduced

to make up the charge deficit. These augmentation charges are defined as the charge

density difference between the AE and the PS wavefunction, but for convenience, they

are pseudized to allow an efficient treatment of the augmentation charges on a regular

grid. Only for the augmentation charges, a small cutoff radius must be used to restore

the moments and the charge distribution of the AE wavefunction accurately.

The success of this approach is partly hampered by rather difficult construction of the

pseudopotential. Later Blöchl [24] has developed the projector-augmented- wave (PAW)

method, which combines idea from the LAPW method with the plane wave pseudopoten-

tial approach, and finally turns out computationally elegant, transferable and accurate

method for electronic structure calculation of transition metals and oxides. Below we

have outlined the idea behind the PAW method.

In the PAW method, the AE wavefunction Ψn (which is a full one-electron Kohn-Sham

wavefunction) is derived from the PS wavefunction |Ψ̃n〉 by means of a linear transforma-

tion:

|Ψn〉 = |Ψ̃n〉 +
∑

i

(|φi〉 − |φ̃i〉)〈p̃i|Ψ̃n〉 (2.23)

The index i is a shorthand for the atomic site R, the angular momentum numbers L =

(l,m) and an additional index k referring to the reference energy ǫkl. The all electron

partial waves φi are the solutions of the radial Schrödinger equation for the isolated atom,

and the PS partial waves φ̃i are are equivalent to the AE partial waves outside a core

radius rl
c and match with value and derivative at rl

c. The core radius rl
c is usually chosen

approximately around half the nearest-neighbor distance. The projector function p̃i for

each PS partial wave localized within the core radius, obeys the relation 〈p̃i|φ̃i〉 = δij .

Starting from Eqn. (2.23), it is possible to show that in the PAW method, the AE charge
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density is given by

ρ(r) = ρ̃(r) + ρ1(r) − ρ̃1(r) (2.24)

where ρ̃ is the soft pseudo-charge density calculated directly from the pseudo wavefunc-

tions on a plane wave grid:

ρ̃(r) =
∑

n

fn〈Ψ̃n|r〉〈r|Ψ̃n〉 (2.25)

The on-site charge densities ρ1 and ρ̃1 are treated on a radial support grids localized

around each atom. They are defined as

ρ1(r) =
∑

n,(ij)

fn〈Ψ̃n|p̃i〉〈φi|r〉〈r|φj〉〈p̃j|Ψ̃n〉 (2.26)

and

ρ̃1(r) =
∑

n,(ij)

fn〈Ψ̃n|p̃i〉〈φ̃i|r〉〈r|φ̃j〉〈p̃j|Ψ̃n〉 (2.27)

It is to be noted that the charge density ρ̃1 is exactly the same as ρ̃ within the augmentation

spheres around each atom. In PAW approach, an additional density, called compensation

charge density is added to both auxiliary densities ρ̃ and ρ̃1 so that the multi-pole moments

of the terms ρ1(r) - ρ̃1(r) in Eqn. (2.24) vanish. Thus the electrostatic potential due

to these terms vanishes outside the augmentation spheres around each atom, just as is

accomplished in LAPW method. Like density, the energy can also be written as a sum of

three terms and by functional derivatives of the total energy, one can derive the expressions

of Kohn-Sham equations.

2.3.3 (L)APW+lo method

Although the pseudopotential method is extremely useful, there are reasons why alter-

natives could be attractive. Unlike the plane wave if we could choose a basis that uses

functions that does not require the introduction of a pseudopotential, then such a basis

set will have to be more efficient. Here we will introduce one of the most accurate methods

(L)APW+lo, which is LAPW in combination with APW.
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Augmented Plane Wave (APW)

Before going into the (L)APW+lo method, it will be advantageous to discuss the APW

method introduced by Slater [25]. Considering the behavior of electrons in space, when

electrons are far away from the nuclei, they show the behavior of free electrons, and are

then suitably described by plane waves. While close to the nuclei, electrons bind strongly

to their nuclei, their behavior is quite as in a free atom and they could be described more

efficiently by atomic like functions. Therefore, the whole space can be divided technically

into two regions, (i) non-overlapping atomic spheres (called the Muffin-tin (MT) regions)

and (ii) interstitial (I) region. Correspondingly, the potential in the whole space can be

defined as

V (r) = V (r) (r ∈ MT)

= constant (r ∈ I) (2.28)

and, two types of basis sets are used in the two different regions,

φAPW
kn

=
∑

lm

Alm,kn
ul(r, ǫl)Ylm(r̂) (r ∈ MT)

=
1√
Ω
eikn·r (r ∈ I) (2.29)

where, Ω is volume of the unit cell. In the atomic spheres (MT), the wave functions are

expanded by radial functions times spherical harmonics. ul is the solution of the radial

Schrödinger equation for a spherical potential [(V (r)] for energy ǫl,

− 1

r2

d

dr
(r2dul

dr
) + [

l(l + 1)

r2
+ V (r) − ǫl]rul = 0 (2.30)

Plane waves are used to build the wave function in the interstitial region (I). The

coefficients Alm in the atomic sphere expansion are determined by requiring that the wave

functions in the MT and the interstitial regions match each other at the MT boundary.

Thus, each plane wave is augmented by an atomic-like function in every atomic sphere

and constitutes thus the basis set used to expand the wave function,

Ψ(r) =
∑

n

cnφkn
(r) (2.31)
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The main disadvantage in the APW method is that one can not get the eigenvalues

from a single diagonalization due to the unknown parameter ǫl in Eq. 2.29. The exact ǫl

value, which is what we want to know, is needed to describe the eigenstate Ψ(r) accurately.

Since this energy depends on the function ul(r,ǫl), the resulting eigenvalue problem is non-

linear in energy. One has to set a trial energy for ǫl, solve Eq. 2.30 to obtain the APW

basis, set up the matrix elements, and compute the secular matrix determinant. If the

eigen-energy does not equal ǫl, another trial energy must be chosen until the eigen-energy

equals ǫl. This makes the APW method extremely inefficient.

LAPW

The non-linearity problem in the APW method was overcomed by Andersen using the

linearized augmented plane wave method (LAPW) [26]. In his idea, the radial function

ul is expanded by a Taylor expansion around ǫl,

ul(r, ǫl) = ul(r, ǫ
1
l ) + (ǫl − ǫ1l )u̇l(r, ǫ

1
l ) +O((ǫl − ǫ1l )

2) (2.32)

where u̇l=
∂ul

∂ǫl
. In this case the radial function error is second order, and the energy

error is of fourth order. When ǫ1l is set near ǫl, the radial radial function and energy errors

are negligible. Formulation of the LAPW basis set is obtained by substituting Eq. 2.32

into Eq. 2.29,

φLAPW
kn

=
∑

lm

[Alm,kn
ul(r, ǫ

1
l ) +Blm,kn

u̇l(r, ǫ
1
l )]Ylm(r̂) (r ∈ MT)

=
1√
Ω
eikn·r (r ∈ I) (2.33)

The basis set in the interstitial region is the same as in the APW method, but in the MT

spheres, the basis functions not only depend on ul, but also on its energy derivative, u̇l.

It is very clear that the LAPW method is thus more flexible than the APW in the MT

spheres. To know the exact value for ǫl as in the APW is not important anymore. For a

fixed value of ǫ1l , the modified basis functions (Eq. 2.32) provide the extra flexibility to

cover a large energy region around this linearization energy. In order to determine both
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Alm,kn
and Blm,kn

, the functions in the MT spheres are required to match the plane wave

function both in value and in slope at the sphere boundary. However, the continuous

derivatives require higher plane wave cutoffs to achieve a given level of convergence.

LAPW with Local Orbital (LAPW+LO)

Electrons can be divided into two types, depending on whether or not electrons in an

atom participate in the chemical bonding with other atoms. One type of electrons are

core electrons, which are extremely bound to their nucleus and are thus entirely localized

in the MT sphere. The corresponding states are called core states. The other type of

electrons are valence electrons, which are leaking out of the MT sphere and bond with

other atoms. However, for many elements, the electrons cannot be clearly distinguished

like that. Some states are neither constrained in the core states, nor lie in the valence

states and are correspondingly termed semi-core states. They have the same angular

quantum number l as the valence states but with lower principal quantum number n.

When applying LAPW on these states, it is thus hard to use one ǫ1l to determine the two

same l in Eq. 2.33. The dilemma is solved by introducing local orbitals (LO)[27], which

are defined as

φLO
lm (r) = [Almul(r, ǫ

1
l ) +Blmu̇l(r, ǫ

1
l ) + Clmul(r, ǫ

2
l )]Ylm(r̂) (r ∈ MT)

= 0 (r ∈ I) (2.34)

Each local orbital is zero in the interstitial region and other atom’s MT sphere. The

three coefficients Alm, Blm and Clm can be determined by requiring the LO to have both

zero value and zero slope at the MT boundary and be normalized.

APW+lo

It has been realized that the standard LAPW method is not the most efficient way to

linearize Slaters APW method [28]. Instead, the basis set of the introduced APW+lo

[28, 29] method is also energy independent and still has the same basis size as the original
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APW method. In order to achieve that a new local orbital (lo) is added, which is different

from the LOs used to describe semicore states to gain enough variational flexibility in the

radial basis functions. The lo definition is,

φlo
lm(r) = [Almul(r, ǫ

1
l ) +Blmu̇l(r, ǫ

1
l )]Ylm(r̂) (r ∈ MT)

= 0 (r ∈ I) (2.35)

The two coefficients Alm and Blm are determined by normalization, and by requiring

that the local orbital has zero value at the Muffin-tin boundary. The advantage of the

APW+lo method is that it has the same small basis set size as the APW method, and

has the same accuracy compared to the LAPW method.

As mentioned by Madsen et al. [28], it is also possible to use a hybrid basis set, LAPW

in combination with APW [(L)APW+lo], and treat the physically important orbitals by

the APW+lo method, but the polarization l-quantum numbers with LAPW.

Full Potential (L)APW+lo Method

In Eq. 2.28, we supposed the potential is constant in the interstitial region and spherical

in the MT region. The accuracy of (L)APW+lo method can be further improved by

considering the full potential (FP), and expand it similar to the wave functions,

V (r) =
∑

lm

Vlm(r)Ylm(r̂) (r ∈ MT)

=
∑

G

VGe
iG·r (r ∈ I) (2.36)

This is also called non-muffin-tin correction. In this case, the radial function ul in Eq.

2.30 is not the exact solution inside the MT sphere. It should be evaluated for the true

MT potential.
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WIEN2k Code

The WIEN2k code [21] is based on the FP-(L)APW+lo method. The code can only be

applied to systems with periodic boundary conditions and is therefore mainly used for

crystal calculations. The WIEN2k code has two main parts. One is the initialization

where it checks if MT spheres overlap, generate a new structure file according to its space

group, detect its symmetry operations, generate a k-mesh in its Brillouin zone, and get

the input trial density. The other one is the self-consistency cycle where it calculates

the potential used in the Kohn-Sham equation, diagonalizes the Hamiltonian and overlap

matrices and generates eigenvalues and eigen-vectors, integrates all valence states and

obtains the valence electron density (ρval), solves the atomic calculation and gets the core

electron density (ρcore), mixes the two electron densities with the old total electron density

(ρold) and gets the new total electron density (ρnew). Thereafter it checks if the properties

(ρnew, or total energy, or forces ...) of the system are converged, and either stops the

self-consistency cycle or starts a new.

2.3.4 The tight-binding method (LCAO method)

For a periodic system, the tight-binding Hamiltonian is given by

H =
∑

il1σ

ǫl1a
†
il1σail1σ +

∑

ij

∑

l1,l2,σ

(tl1l2
ij a†il1σajl2σ + h.c.) (2.37)

where, the electron with spin σ is able to hop from the orbitals labelled l1 with onsite

energies equal to ǫl1 in the ith unit cell to those labelled l2 in the jth unit cell, with the

summations l1 and l2 running over all the orbitals considered on the atoms in a unit

cell, and i and j over all the unit cells in the solid. Thus, any orbital in the solid can

be defined with the two indices, i and l1, henceforth referred to as the set (i, l1). The

hopping interaction strength (tl1l2
ij ) depends on the nature of the orbitals involved as well

as on the geometry of the lattice [14]. Since the hopping integrals are expected to fall

off rapidly with distance [30], it is sufficient to consider those terms in the Hamiltonian

which allow the electron to hop to orbitals on nearest neighbor atoms. Further, since the

Hamiltonian is independent of the spin (σ), in the rest of the discussion the spin indices
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of the Fermion operators will not be retained explicitly. The Hamiltonian can be cast into

the momentum space by a Fourier transformation of the operators given by

a†il1 =
1√
N

∑

k

a†kl1
eik.ril1

so that,

H =
∑

il1

ǫl1a
†
il1
ail1 +

∑

<ij>

∑

l1,l2

(tl1l2
ij a†il1ajl2 + h.c.)

=
1

N

∑

il1

∑

kk′

ǫl1a
†
kl1
ak′l1e

ik.ril1e−ik′.ril1

+
1

N

∑

<ij>

∑

l1,l2,k,k′

(tl1l2
ij a†kl1

ak′l2e
ik.ril1e−ik′.rjl2 + h.c.)

An advantage of this representation is that the Hamiltonian breaks into distinct blocks

for each k value, thereby simplifying the problem. In order to realize this, we first define

a set of vectors Rl1l2
α for the orbital (i, l1), that connect it to the orbitals (j, l2) on nearest

neighbor atoms, rjl2 = ril1 + Rl1l2
α . As a result of the periodicity of the lattice, the

set of vectors Rl1l2
α are the same for every (i, l1) independent of the unit cell index, i.

As the hopping integrals, between orbitals (i, l1) and (j, l2) depend only on the vector

Rl1l2
α connecting the two orbitals involved, the quantities tl1l2

ij in the Hamiltonian can be

replaced with tl1l2
α . Therefore, the simplified Hamiltonian becomes,

H =
1

N

∑

il1

∑

kk′

ǫl1a
†
kl1
ak′l1e

ik.ril1e−ik′.ril1

+
1

N

∑

α

∑

i,l1,l2,k,k′

(tl1l2
α a†kl1

ak′l2e
ik.ril1e−ik′.(ril1

+R
l1l2
α ) + h.c)

=
1

N

∑

il1

∑

kk′

ǫl1a
†
kl1
ak′l1e

i(k−k
′).r

il1
+

1

N

∑

α

∑

i,l1,l2,k,k′

(tl1l2
α a†kl1

ak′l2e
i(k−k′).ril1e−ik′.R

l1l2
α + h.c)

=
∑

l1

∑

kk′

ǫl1a
†
kl1
ak′l1δ(k − k′) +

∑

α

∑

l1,l2,k,k′

(tl1l2
α a†kl1

ak′l2δ(k − k′)e−ik′.R
l1l2
α + h.c.)

=
∑

l1

∑

k

ǫl1a
†
kl1
akl1 +

∑

α

∑

kl1l2

(tl1l2
α a†kl1

akl2e
−ik.R

l1l2
α + h.c.)

From the above expression, it is seen that the Hamiltonian involves terms connecting

different orbitals which may be on the same or on different atoms at a k point. Thus, the

problem of electronic structure determination reduces to one of solving the Hamiltonian

at each k point in the Brillouin zone. This has to be performed numerically in most cases,
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with the size of the matrix equal to the total number of orbitals considered on all the

atoms in the unit cell.

The eigenfunctions of the Hamiltonian, H, correspond to linear combinations of the

atomic orbitals, φj(r), given by,

Ψi(r) =
∑

j

xijφj(r)

It is seen that the different atomic orbitals located on neighboring atoms are not nec-

essarily orthogonal to each other. However, since the formalism of second quantization

requires an orthogonal basis for the proper definition of fermion creation and annihilation

operators and their associated Fock space, the Löwdin transformation [31] which is out-

lined below has been used to transform the orbitals into an orthogonal basis set. If the

spatial overlap between orbitals on neighboring atoms is given by

Sαβ =


drφ∗
α(r)φβ(r) − δαβ

it is then seen that the coefficients xij must satisfy the matrix equation

Hx = (1 + S)xE

where, x†(1 + S)x = 1

involving x and E, which are the matrices formed by the expansion coefficients xij and

the eigenvalues Ej respectively. In order to represent the Hamiltonian in an orthogonal

basis, given by c, the matrix x is replaced by c according to the relation,

x = (1 + S)−1/2c

By this substitution, the eigenvalue problem is reduced to the form,

H′c = Ec

c†c = 1

where H′ is the Hamiltonian in the orthogonal basis. H′ is related to the Hamiltonian set

up in the non-orthogonal basis by the expression,

H′ = (1 + S)−1/2H(1 + S)−1/2
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In order to evaluate (1+S)−1/2, the matrix (1+S) is first diagonalized by a unitary

transformation U to yield a diagonal matrix D,

U†(1 + S)U = D

As the eigenvalues of (1+S) are positive, a new matrix D−1/2 can be formed from D

by replacing each diagonal element by its inverse square root. So, (1+S)−1/2 can be

evaluated using the following relation

(1 + S)−1/2 = UD−1/2U†

Once (1+S)−1/2 is known, the Hamiltonian can be set up in the orthogonal basis and

solved.
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Chapter 3

Role of semicore Ga d states in GaX semiconductors

Semicore states present in Ga - based semiconductors play an important role in deter-

mining the properties of these materials. As they are not too deep, they are chemically

active and play a role in modifying the band gap, band offsets and in some cases also the

cohesive properties and the lattice constant. In this chapter we examine three aspects.

(a) Modification of equilibrium properties such as lattice constant.

(b) The interaction of semicore states with the valence and conduction band states.

(c) Modification of the valence band offsets with lattice matched materials.

3.1 Role of semicore Ga d states in modification of equilibrium

properties

3.1.1 Introduction

The semiconductor industry has used silicon as its basic building block since the begin-

ning. Recently the focus has shifted to other materials with the aim of harnessing their

multi-functionality to construct new generation devices. An important class of materials

that have received considerable attention in this context are the nitrides. The bulk ni-

1This section is based on the following paper:

R. Cherian and P. Mahadevan, Bulk and nanoscale GaN: Role of Ga d states, Phys. Rev. B. 76, 075205

(2007).
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trides formed with group III elements show interesting physical properties such as large

piezoelectric response [1]. However, the dilute nitrides where one observes dramatic effects

by the introduction of a small amount of nitrogen to replace the anion sites have received

a lot of attention in recent times. Alloys of GaInNAs have been recognized as important

materials for the development of long wavelength solid-state lasers emitting within the

fibre-optic communication wavelength window (1.3 to 1.55 µm) [2]. There are also the-

oretical predictions that exist which suggest that these materials could also be used to

increase the efficiency of multijunctional solar-cells [3]. In the case of GaNP alloys, the

crossover from an indirect to a direct band gap induced by N incorporation [4] promises

high radiative efficiency, whereas a N-induced reduction in the lattice constant offers a

possibility of lattice matching between optically efficient III-V compounds and Si wafers,

desirable for the integration of the two technologies [5]. GaInNAs semiconductor quantum

dots with dilute amount of nitrogen substitutional impurities are promising candidates

for the active region in the next generation of optoelectronic devices [6]. Transition metal

doped GaN has been found to exhibit ferromagnetism at room temperature [7] which

could make these materials useful in the emerging area of spintronics.

With recent advances in computational power, theory and specifically ab-initio density

functional theory has played an important role in the design of materials with tailor-made

properties [8]. Calculations for the systems of interest in the context of the nitrides - dilute

nitrides as well as quantum dots, are usually performed for periodic systems considering

large and representative supercells. These are computationally demanding within an ab-

initio approach. It is therefore useful to have accurate and reasonable approximations

which decrease the computational cost. In this context it was shown that enormous sav-

ing in terms of computational time may be made if one used ultrasoft pseudopotentials

developed by Vanderbilt [9]. Further improvements were made by Blöchl [10] who com-

bined the ideas of soft pseudopotentials and all electron methods like LAPW (linearised

augmented plane wave) within an elegant framework called the projected augmented wave

(PAW) method. In this work we have examined the bulk electronic structure of GaN us-

ing PAW potentials. The results have been compared with those obtained using ultrasoft

pseudopotentials. The calculated equilibrium lattice constants are within 0.3 % of each

other.
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The role of the Ga 3d states in determining the physical properties of GaN has received

considerable attention over the past two decades. Unlike in the case of other Ga-V semi-

conductors one finds that in GaN the Ga 3 d core states are not chemically inert. One

finds a strong overlap in energy between the semi-core Ga 3d states as well as the N 2s

states. Fiorentini et al. [11] pointed out that ignoring this interaction would have conse-

quences on both the cohesive energy as well as the equilibrium lattice constant deduced

theoretically. According to the variational principle, neglect of any relaxation of the semi

core levels would increase the total energy, an effect which would disappear in the limit

of well separated atoms in the solid. Further, the overlap of the core states with the

valence states on the same atom results in a nonlinear exchange interaction. Finally the

interaction of core states with core states on the neighboring atom results in the neglect

of closed shell repulsion. This has the effect of an increase in the kinetic energy when

the cores on neighboring atoms are made orthogonal. If this contribution is neglected,

the cohesive energy comes out too large and the lattice constant too small. The net

effect which they found was that the lattice constant when Ga 3d states were neglected

was almost 4 % smaller than that obtained with the Ga 3d states included within LDA.

An additional effect of the neglect of the Ga 3d states is observed in the modification of

the band gap. The Ga 3d states that split into states with t2 and e symmetry in the

tetrahedral crystal field of the N neighbors, interact with the valence band derived levels

with the same symmetry. This interaction pushes the valence band maximum to higher

energies and therefore decreases the band gap of GaN in comparison to treatments in

which Ga 3d states were a part of the core. Recent studies by Bouhafs et al. [12] on the

GaN semiconductor, at a fixed lattice constant, also confirm that the band gap decreases

in a treatment in which the Ga 3d states were included in the valence.

PAW potentials give us the freedom to toggle between using the Ga 3d in the va-

lence and in the core and allows us to simultaneously examine the modifications in the

electronic properties and more importantly the structural and cohesive properties. The

implementation of PAW that we use allows for core-valence interaction within a frozen

core approximation. We first review the existing understanding for bulk GaN using PAW

potentials. The equilibrium lattice constant computed by us within pseudopotential cal-

culations with and without Ga 3d in the valence differ by less than 0.3 % using ultrasoft
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pseudopotentials. The deviations between the two approaches is similar when we use

PAW potentials. All earlier studies have found that the lattice constant without Ga 3d

in the valence is underestimated within the pseudopotential approach, and our results

using ultrasoft pseudopotentials are consistent with this observation. The PAW approach

gives us a different trend, however, and we attribute that to the treatment of core-valence

exchange interaction. Changing the anion to P and then As, we find an overestimation

of the lattice constant when Ga 3d states are not included as a part of the valence. The

difference between the theoretical lattice constants, however, decreases as we go from GaN

to GaAs. A considerable portion of the literature has commented on the Ga 3d admixture

in the valence band of GaN. To explicitly examine this, we have plotted the Ga d partial

density of states for both cases - with and without Ga 3d states in the valence. The Ga d

contribution in the valence band arising from semi-core valence interaction accounts for

51% of the total d admixture. This ratio decreases as we move to GaP and GaAs.

Having studied the bulk limit of GaN, we examined small representative nanocrystals

of GaN. Quantum confinement effects modify the energy of the valence band maximum

and conduction band bottom of the semiconductor nanoparticles, and should decrease

the separation between the semi core Ga 3d states and the valence band maximum. This

results in an increased interaction strength and therefore an enhanced 3d contribution in

the valence band. Comparing the equilibrium lattice constant with and without Ga 3d,

we find a difference of ∼ 1% for nanocrystals with an average diameter of ∼ 10 Å.

3.1.2 Methodology

The electronic structure of bulk zinc-blende GaN, GaP and GaAs was calculated using

a plane wave pseudopotential implementation of density functional theory within VASP

Ultrasoft pseudopotentials as well as PAW potentials [13] have been used. Calculations

have been performed with and without Ga 3d states included in the valence band. GGA-

PW91 approximation [14] has been used for the exchange. A dense k-points grid of 8x8x8

within Monkhorst Pack scheme has been used. The energy cutoffs used for the kinetic

energy of the plane waves used in the basis was 500 eV for GaN, 337.5 eV for GaP and

260.9 eV for GaAs. The calculations for GaP and GaAs which did not include the Ga 3d
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states as a part of the valence band had a cutoff of 353.4 eV. The convergence with respect

to k-points was tested by increasing the mesh density from 8x8x8 to 10x10x10. The total

energies changed by 0.02 meV. The equilibrium lattice constant has been determined by

fitting the energy variation with volume to the Murnaghan equation of state [15]. An

analysis of the electronic structure was performed using the density of states calculated

using the tetrahedron method. The wavefunctions were projected onto atom-centered

spherical harmonics that were integrated over spheres of radii 1.2 Å for Ga, P and As in

GaP, GaAs and GaN and 0.95 Å for N in GaN for the evaluation of the density of states.

We also examined the electronic structure of GaN nanocrystals in the nanocrystal

limit by considering representative nanocrystals. We construct nanocrystals by cutting a

spherical fragment of a bulk crystal, which has an underlying geometry of the zinc-blende

structure. Now to define a spherical nanocrystal in this way we need to specify the center

and the radius (Ref. Chapter 6). In our studies the nanocrystal is centered on the Ga

atom, and then the nanocrystals are generated by considering a spherical cut off radius.

These will have a Td point group symmetry. The smallest nanocrystal considered had

4 atoms around the central Ga atom, and since it had just one layer around the central

atom for simplicity we denote this nanocrystal as n=1 (where n stands for the number of

layers around the central atom). The next size nanocrystal which was considered in our

study had 3 layers around the central atom (n=3), having in total 13 Ga and 16 N atoms.

The average equilibrium lattice constant of the nanocrystals were calculated (refer

section 6.2). Again as done in the case of the bulk, the average equilibrium lattice constant

with and without Ga 3d states in the valence were determined. Features of the electronic

structure are examined by calculating the density of states broadening each eigenvalue

with a gaussian of full width at half maximum of 0.1 eV.

3.1.3 Results and Discussion

As discussed earlier , the near resonance of the Ga 3d states with the N 2s states results in

a strong deviations in calculated structural properties in treatments where Ga 3d states

are not included as a part of the valence band. These considerations prompted us to

carry out calculations using PAW potentials, allowing us to toggle between using Ga d
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in the valence, and merely as a part of the core. The results are given in Table I. For

the comparison the results using ultrasoft potentials were also calculated (Table I). The

error in the calculated lattice constant with and without d states in the valence were

∼ 0.03-0.04 Å (around 1%). A smaller error in the calculated lattice constant is also

found when one used ultrasoft potentials with and without Ga d in the valence. These

results suggest that possibly the large deviations in the equilibrium lattice constant found

earlier are specific to the choice of the method. The trends in the lattice constant with

and without d are in opposite directions when we used ultrasoft potentials and when we

use PAW potentials. As the treatment of the core electrons are meaningful in the PAW

calculations, we examined these calculations in greater detail. The equilibrium lattice

constant is predicted to be smaller when Ga d states are included in the valence. This

is a suprising result at first as Ga d states interact primarily with the filled N s and N

p states in the valence band. Hence, naively one does not expect there to be any energy

gain as a result of the interaction. However the valence and conduction band electrons

feel the presence of the Ga 3d electrons in the semi-core. Our analysis in section 3.2

has shown the manner in which the Ga d states interact with valence band states. By

artificially moving the Ga d states to deeper energies using a U on the 3d states within

the framework of LDA+U, we simulated the situations of having / not having chemically

active Ga 3d states. Gradually moving the Ga 3d states to deeper energies we find a

redistribution of charge on Ga related levels. This in turn leads to a modification of

the interaction between the anion p states and cation states. The altered interaction

strengths can therefore explain why there should be any modification of the total energy

and therefore the lattice constant of these systems with and without the inclusion of Ga

3d states in the valence.

Moving down the Group V series of the periodic table to heavier anions instead of

Nitrogen, we find a similar trend. The theoretical lattice constant (Table II) calculated

within the PAW method in the absence of 3d in the valence for Ga are consistently larger

than when the 3d states are treated as a part of the valence. With increasing atomic

number on the anion, the Ga 3d states are pushed deeper into the valence band, and hence

their interaction with the anion p states making up the valence band are weaker. Hence

the deviation in the equilibrium lattice constant with the two choice of basis becomes
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smaller as we go from GaP to GaAs. While the deviations in the theoretical lattice

constant are small, the errors in the theoretical bulk modulus are significant in the case

of GaN, while they are small in the case of GaP and GaAs.

The significant interaction between the Ga 3d states with the N p states comprising the

valence band is usually measured by plotting the Ga d admixture in the valence band. Our

choice of basis, however, allows us to distinguish the 3d admixture from the 4d admixture,

which one believes is not strongly affected by changing the basis and is largely additive.

The total as well as the s, p, d contribution to the Ga and N partial density of states have

been plotted (Fig. 3.1) for GaN with the 3d states on the Ga treated as a part of the

core. The zero of the energy axis has been set to be the valence band maximum. The N s

states contribute at around -11.5 eV while the N p states contribute between 0-6 eV. The

band gap is calculated to be 1.47 eV within the present calculation. Ga s and p states are

strongly intermixed in the conduction band. As is evident from the middle panel, there

is a small admixture of the Ga 4d states within the states comprising the valence band

(especially 0-3 eV below the valence band maximum).

A similar plot (Fig. 3.2) has been made from the calculations which include Ga 3d

states in the valence. The gross features of the electronic structure remain unchanged.

The Ga 3d states are found to lie at higher energies in these calculations than the N s

states. Significant interaction is found to exist between the semi core N s and Ga d states

because of their close proximity in energy. The Ga d states in the semi core also interact

with the N p states. The band gap in the current calculation is found to be 1.56 eV,

therefore increased by ∼ 90 meV from the value obtained when the Ga 3d states were

a part of the core. It should be noted that the density of states have been plotted at

the theoretical equilibrium lattice constants given in Table 3.1. Had we fixed the lattice

constant in the two calculations, we would have seen a reduction in the band gap when

the Ga 3d states were included in the basis as observed earlier [12]. Here we have the

additional effect of a decreased lattice constant and so we find a larger band gap.

We have also examined the change in Ga d contribution in the valence and conduction

band with the two choice of basis. This is plotted in Fig. 3.3. Assuming that the Ga

4d admixture in the valence band is unchanged when Ga 3d states are included in the
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Figure 3.1: (a) The total DOS , (b) Ga s (solid line), p (dotted line) and d(dashed line)

projected density of states and (c) N s (solid line), p (dotted line) and d(dashed line)

projected density of states for GaN using PAW potentials with no Ga-d. The zero of

energy corresponds to the valence band maximum.

basis, the results are quite surprising. We find that the Ga 3d admixture in the valence

band accounts for around 51% of the total Ga d component in the valence band. This is

contrary to the belief that the Ga d contribution in the valence band is a measure of the

semi-core valence interaction. Similar results are plotted for GaP and GaAs in Figs. 3.4

and 3.5 at their theoretical equilibrium lattice constants (Table 3.2). The d admixture

gradually decreases as we go from GaN to GaP and finally to GaAs, and is mainly from

interaction of the anion p states with the Ga 4d states in the conduction band. The Ga

3d admixture in the valence band accounts for around 42% and 23% of the total Ga d

component in the valence band for GaP and GaAs respectively.

As GaN showed significant interaction between the Ga 3d states with the N p sates,

we examined the modifications in the interactions and consequent implications when one
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Figure 3.2: (a) The total DOS , (b) Ga s (solid line), p (dotted line) and d(dashed line)

projected density of states and (c) N s (solid line), p (dotted line) and d(dashed line)

projected density of states for GaN using PAW potentials with Ga-d. The zero of energy

corresponds to the valence band maximum.

went down to the nanoregime. As is well known, quantum confinement effects modify the

position of the levels which move from their positions in the bulk solid to deeper energies

at a rate which is inversely proportional to the effective mass of the level. Since the d

states would move more slowly than the states comprising the valence band maximum,

with decreased nanocrystal size, one expects the Ga d - N p seperation to decrease, and

hence interaction to increase. Indeed this is found to be the case, and one measures the

enhancement in the p-d strength by the relative error that one finds in computed quantities

such as the lattice constant. In Table 3.3 we provide the optimized lattice constants for

the two representative nanocrystals. These are found to be smaller than that for the bulk

GaN. As the size of the nanocrystal decreases we find the the relative position of the Ga

3d from the valence band maximum to decrease, for the smallest nanocrystal (n=1) the
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Table 3.1: The lattice constant, a0 (Å) and bulk modulus, B (G Pa), variation in GaN

with different potentials.

PAW USP

no Ga-d with Ga-d no Ga-d with Ga-d

a0 4.584 4.545 4.513 4.530

B 183.63 172.59 177.33 170.03

Table 3.2: Calculated structural properties for GaX, X= N, P and As. The lattice constant

a0 is in Å, B is the bulk modulus in G Pa.

PAW

no Ga-d with Ga-d

a0 B a0 B

GaN 4.584 183.63 4.545 172.59

GaP 5.532 78.74 5.504 76.70

GaAs 5.759 62.47 5.746 61.28

seperation is reduced by 2 eV and for the n=3 case it is reduced by 0.6 eV, with respect

to the bulk separation value, resulting in the increased p-d interaction which modifies the

lattice constant. With the two choices of basis we also examined the changes in the Ga d

and N p contribution in the valence and conduction band. Around the conduction band

region the changes resulting from the choice of the two basis were small. For the two

nanocrystal cases (n=1 and n=3) the density of states around the valence band region

are shown in Fig. 3.6 . The zero of the energy corresponds to the valence band maximum.

Here the Ga 3d admixture in the valence band accounts for around 53% for the n=1 case

and 51% for the n=3 case of the total Ga d component in the valence band, which is

almost the same as what we had observed for the bulk.

Further the presence and absence of the semi-core Ga 3d states modifies the lattice

constant in the same direction as the bulk calculations. The deviations are found to of

the same order as that observed for the bulk. At the theoretical calculated equilibrium

lattice constant of these nanocrystals we found band gap of 5.45 and 5.46 eV within our
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Figure 3.3: The Ga d projected density of states for GaN using PAW potentials with

(dotted line) and without (solid line) Ga 3d as a part of the valence band. The zero of

the energy corresponds to the valence band maximum.

calculations and larger nanocrystal had a band gap of 4.79 and 4.76 eV, for the cases with

and without the inclusion of Ga 3d states in the basis separately.

3.1.4 Conclusion

Hence we have studied the modification of the equilibrium properties for GaN, with and

without treating the Ga 3d in the valence, in both the bulk as well as in the nanocrystal

limit. The effects of the lattice constant modification are found to be small and of the

order of 1% at both limits. Hence we conclude that a treatment using PAW potentials

where Ga 3d states are treated as a part of the core is adequate to describe the properties

of the GaN.
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Figure 3.4: The Ga d projected density of states for GaP using PAW potentials with

(dotted line) and without (solid line) Ga 3d as a part of the valence band. The zero of

energy corresponds to the valence band maximum.

3.2 Role of Coulomb interactions in semicore levels Ga d levels

of GaX semiconductors: Implication on band offsets

3.2.1 Introduction

Enormous progress has been made over the years in the development of realistic theories of

materials starting from a approach [16]. A popular method in this direction is the Kohn-

Sham formalism of density functional theory (DFT). The Hohenberg-Kohn theorem [17]

states that the ground state energy can be written as an exact functional of the density.

2This section is based on the following paper:

R. Cherian, P. Mahadevan, and C. Persson, Role of Coulomb interactions in semicore levels : Implication

on band offsets, Accepted in Solid State Communications.
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Figure 3.5: The Ga d projected density of states for GaAs using PAW potentials with

(dotted line) and without (solid line) Ga 3d as a part of the valence band. The zero of

energy corresponds to the valence band maximum.

Unfortunately the exact form of the functional is not known, and approximations such as

the original local density approximation (LDA) [18, 19] as well as various types of the

generalized gradient approximations (GGA) [14, 20] have been used quite successfully in

describing the ground state properties of a wide variety of systems. See Ref. [21] for pros

and cons of the DFT.

The limitations of the approximated exchange functionals (incorrect self interaction

and the neglect of correlations effects) directly affect the electron energy states, especially

excited properties such as the band-gap energy. For s-p bonded semiconductors, the GW

approximation [22] has been enormously successful in improving the gap energy by par-

tially or fully self-consistently solving the Dyson equation. However, another contributory

factor to the LDA band-gap error is the cation d position [23], especially for shallow d
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Figure 3.6: The Ga d projected density of states (left panel) using PAW potentials with

(solid line) and without (dashed line) Ga 3d as a part of the valence band, the N p projected

density of states (right panel) using PAW potentials with (solid line) and without (dashed

line) Ga 3d as a part of the valence band for the two nanocrystal sizes n=1 (top panel)

and n=3 (bottom panel) considered have been shown. The zero of energy corresponds to

the valence band maximum.

states. The reason is that the LDA d-levels are not deep enough to be chemically inert, and

so they interact with the valence band states leading to a reduction of the gap energy. To

correct this LDA error, without degrading the computational time, an on-site correction

potential U has been proposed [24]. The correction potential is chosen to be dependent

on the atom and angular momentum projected density operator [25, 26], therefore the

correction will affect mainly the semicore states. Within this LDA+U model, the po-

tential correction thus pushes the semicore/valence states to deeper energies and thereby

modifies the valence band maximum position as a result of the modified semicore/valence

interaction.
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Table 3.3: Optimized lattice constant in Å for Ga centered nanocrystals.
Nanocrystal size PAW

(n) no Ga-d with Ga-d

1 4.521 4.483

3 4.550 4.509

In this work, we examine the modification of the energy of the valence band maximum

and the consequent change in the band gap arising from an incorrect position of the

semicore d states on the cations in binary GaX semiconductors (X = N, P, and As). The

belief has been that the t2 states on the semicore cation d states interact with the states

comprising the valence band maximum with the same symmetry pushing them up. As

a result, the band gap is reduced. A recent paper [27] has questioned this model, and

has proposed that a part of the shifts come from modified screening effects which result

in a movement of the conduction band minimum also. Re-examining this proposition we

demonstrate that the opening of the band gap with a U correction on the semicore d

states is due to a movement of the valence band maximum alone. In addition there is a

reorganization of charge on the Ga atoms and this results in large shifts of ∼ 1-2 eV of

the core levels on Ga while those on the anion remain unchanged.

3.2.2 Methodology

We have carried out ab-initio calculations within the local spin density approximation of

the DFT. A full potential linearized augmented plane wave (FPLAPW) implementation

in the WIEN2k code was used by us in our calculations. We considered the systems GaN,

GaP and GaAs in the zinc-blende structure. The radii for the muffin tin spheres used were

RMT = 1.20, 1.16 and 0.96 Å for both Ga and X in GaAs, GaP and GaN, respectively.

In the calculations we use GMAX = 14 and |K| < 9/RMT . The LDA approximation

to the exchange functional was used. The number of k-points used was 8×8×8 for the

self-consistency and in the evaluation of the density-of-states (DOS). The tetrahedron

method of integration was used for the DOS calculation. An additional potential within

the LDA+U [26] formalism was introduced on the Ga d states, and the changes in
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the electronic structure were calculated as a function of U . Superlattices of the form

(GaX)5/(Ga(U)X)5 were constructed to determine the valence- and conduction band

offsets introduced by U with respect to the U = 0 eV result. A k-points grid of 8×8×1

was used for the superlattice.

The equilibrium lattice constants of these materials were found to be 4.46, 5.40 and

5.61 Å (Table 3.4), respectively, in the absence of any U on the Ga d states. The value

of U applicable for each system was determined by comparing the energy of the semicore

d states with that determined from photoemission experiments [28, 29], yielding U = 11,

10 and 9 eV for GaN, GaP and GaAs respectively. Using these values, the equilibrium

lattice constants were determined to be slightly smaller, namely 4.45, 5.37 and 5.58 Å,

respectively. The results are given in Table 3.4. In order to make a proper comparison

with earlier published work [27] which was performed with a plane wave pseudopotential

implementation, we calculate the equilibrium lattice constant also by using projector

augmented-wave (PAW) potentials [13] within the VASP package.

Table 3.4: Calculated lattice constants in units of Å of GaN, GaP and GaAs using the

VASP/PAW and WIEN2k/FPLAPW methods. U = 11, 10 and 9 eV for GaN, GaP and

GaAs, respectively.

LDA LDA+U

VASP WIEN2k VASP WIEN2k

GaN 4.46 4.46 4.24 4.45

GaP 5.39 5.40 5.27 5.37

GaAs 5.61 5.61 5.49 5.58

In order to obtain the band lineup between the LDA and LDA+U calculations, the

following prescription was followed. First, we performed bulk calculations using WIEN2k

for GaX within LDA and LDA+U separately at its equilibrium lattice constant, and we

determined the valence band maximum and the conduction band minimum with respect to

the corresponding X anion 1s core level (Ev0
and Ec0 respectively). As the value of energy

by itself has no meaning, we cannot compare the energy corresponding to the valence band

maximum/conduction band minimum between two different calculations. Therefore, we
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constructed superlattices of the form (GaX)5/(Ga(U)X)5 and the relative separations

of the two core X 1s levels in the bulk-like regions on both sides, far away from the

interface, were determined. This was used to construct the band lineup. The optimized

lattice constants of GaX were different from Ga(U)X, and therefore the superlattice was

constructed using the average of the lattice constants obtained by the LDA and LDA+U

methods. Thereafter, we incorporated the effects of strain on the band lineup, by using

the literature values of the hydrostatic deformation potentials for the valence band and

conduction band [30]. The strained valence band maximum (Ev) and conduction band

minimum (Ec) were related to the unstrained values Ev0
and Ev0

by the two expressions:

Ev = Ev0
+ av

(V −V0)
V0

,

Ec = Ec0 + ac
(V −V0)

V0

where, V0 was the volume of the unit cell in its equilibrium lattice constant within LDA

or LDA+U while V was the volume of the unit cell at the averaged lattice constant. av

and ac were the hydrostatic deformation potentials for the valence band maximum and

conduction band minimum. The procedure followed in Ref. [27] was similar except that

they used the averaged electrostatic potentials instead of core levels for the definition of

an absolute energy scale.

3.2.3 Results and Discussion

In Fig. 3.7 we have plotted the Ga d and As p partial density of states for GaAs for the

cases without a U on the Ga d states [panel(a)] and with a U on the Ga d states [panel(b)].

The most notable change seems to be a movement of the Ga d states from −15 eV to

−18.5 eV with a U of 9 eV. There are changes in the conduction band as well as in the

valence band which are not evident on the energy scale at which Fig. 3.7 is plotted. In

order to examine the changes in the valence band/conduction band, we first align with

respect to the As 1s core level in both the systems. The zero of energy has been chosen

to be the valence band maximum of the zero U calculations. The conduction bands of the

two calculations line up and the shifts are in the valence band alone. As is evident one
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has an increase of the band gap. Using the value of U determined to be appropriate for

each material, we find that the increase in the band gap is found to be 0.23 eV for GaN,

by 0.28 eV for GaP and 0.20 eV for GaAs.

The mechanism for the opening up of the gap has been discussed in the literature in

another context [31]. Wei and Zunger [31] examined the role of semicore d states in

the valence band offsets of lattice matched common anion semiconductors. The belief

was that, for the first approximation, the valence band maximum in the common anion

semiconductors should be aligned. Additional interactions were responsible for the ob-

served offsets. For instance, here, these were found to arise from an interaction between

the d states with t2 symmetry on the cation with the corresponding states with the same

symmetry comprising the valence band maximum. This interaction pushes the valence

band maximum into the band gap, reducing it from the value in the system which has no

semicore states. An incorrect position of the semicore states closer to the valence band

maximum results in an enhancement of the effective p − d interaction coupling the two

interacting states, and therefore a reduction in the band gap.

Recent work by Janotti et al. [27] have examined the mechanism of the increase in

the band gap with U on the semicore states. Their approach involved determination

of the band offsets between the GaX and the Ga(U)X calculations using the procedure

described in the methodology. They found shifts in both the valence band maximum as

well as the conduction band minimum. The former could be understood by the model

described earlier. The shift in the conduction band minimum was understood in terms of

modified screening arising from a U on the semicore states.

Our analysis presented in Fig. 3.7 assumes that the X 1s core level are aligned in

the two systems. This is not the case and a superlattice geometry is used to determine

the relative shifts of the X 1s core level. In addition, Ref. [27] suggested a different

equilibrium lattice constant for GaX and Ga(U)X, while analysis of Fig. 3.7 was carried

out with the same lattice constant with and without U . We examined the theoretical

equilibrium lattice constant within both VASP and WIEN2k with and without potential

correction U . We expect small changes due to modified interactions of the semicore states

and this is what we find for the results computed within WIEN2k. The results from VASP
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Figure 3.7: The Ga d (black solid lines) and As p (red dashed lines) projected DOS

for (a) U = 0 eV and (b) U = 9 eV on the Ga 3d states for GaAs, obtained from the

WIEN2k/FPLAPW calculation. The zero of energy corresponds to the valence band

maximum. The inset of (a) show the near Γ point magnified view of the band dispersions,

(along L-Γ-X direction) for U = 0 eV (solid lines) and 9 eV (dashed lines) on the Ga 3d

states for GaAs. Here, the valence band maximum of the U = 0 eV case corresponds to

the zero of energy.
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suggest much larger deviations in the lattice constant. We are not sure what the origin

of this large discrepancy is but we believe this could be the origin of different conclusions

arrived at in the earlier work [27].

The band lineup between the zero U and the finite U calculations is given in Fig. 3.8

for GaN, GaP and GaAs. The band-gap energy is found to be 0.22, 0.24 and 0.19 eV

larger for the finite U results. In order to examine the origin we look at valence- and

conduction band offsets. For GaN we find a shift of 0.704 eV of the conduction band

minimum for finite U . This is equal within 10-20 meV to the shift in the N 1s corelevel in

the two cases. Hence the conduction band shift cannot contribute to the opening of the

band gap. Similar conclusions are reached for GaP and GaAs also. A suprising conclusion

from this work are the valence band shifts of the finite U results with respect to the zero

U case. We argued that reduced semicore valence interaction should be responsible for

the valence band maximum of finite U results to be lower than that of the zero U result.

While the Ga 3d levels do move deeper in energy with U , the valence band offset of GaN

with U is positive while that of GaAs and GaP are negative with respect to the zero

U results. This is a result of the large shifts of the energy eigenvalues for finite U with

respect to the zero U result. This is opposite in direction to the shifts of the valence band

maximum, due to reduced p-d interaction as the Ga 3d levels move deeper. Hence, we

have the observed trend in the valence band offsets.

In order to examine the effect of U on the core levels, we considered the cation and

anion core levels for both the finite U as well as zero U case. The results are presented

in Table 3.5. In every case we find that the anion levels align with respect to each other.

There are however deviations in the cation levels for the finite U calculations. These

deviations we find are as large as 1–2 eV.

One could get some hints of the origin of these shifts from the s, p and d components

of the charge on each atom calculated as a function of U (Table 3.6).

The most significant changes that we find for any system with U are on the Ga levels,

while those on the anion remain largely unchanged. As expected the d component of the

charge on the Ga increases as the Ga d becomes more localized. To compensate the s

and p components of the charge on Ga decrease. This regulation of charge takes place to
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Figure 3.8: Calculated band offsets at the hypothetical interfaces (a) GaN/Ga(U)N, (b)

GaP/Ga(U)P and (c) GaAs/Ga(U)As using the WIEN2k/FPLAPW method. U correc-

tion has been introduced on the Ga d states. The X (X = N, P, and As) 1s level is shown

in dashed dotted lines. The energy separations between the levels are given in eV.
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offset the additional Coulomb repulsion that the electrons encounter due to localization

of charge on Ga with increasing U . As the interaction between the core and the valence

is dependent on the charge on that atom, the Ga related core levels shift while the anion

related shifts remain unchanged.

3.2.4 Conclusion

In conclusion, we present a model to understand the opening of the band-gap when a U is

applied on the semicore d states present in the III–V semiconductors. An analysis reveals

that it is only the modified p-d interaction between the states comprising the valence band

maximum and the semicore d states that results in an opening of the band gap with U .

The band offsets between the zero-U and the finite-U systems have been evaluated for

GaX semiconductors. While one would expect a negative valence band offset of the finite

U result with respect to the zero U result as a result of reduced p-d interaction, we find

the opposite trend in GaN.

3.3 Role of semicore Ga d states in determining the valence

band offset of common anion semiconductors.

3.3.1 Introduction

Band offsets in semiconductor heterostructure

Advances in growth techniques have made it possible to fabricate single crystal layers of

one material on some other material by epitaxy. These materials known as heterojunctions

[32] have the advantage of giving rise to high quality materials, in addition to suggesting

the possibility of changing the properties of the materials over wide limits as a function

of the layer thickness which can be varied from a fraction of an atomic layer to hundreds

of micrometers.

The properties of such heterostructures constructed from semiconductors are of critical

importance for many devices including field-effect transistors, bipolar transistors, light-
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emitting diodes and lasers. At the interface of the heterostructure, the energies of the

conduction and valence band edges change. The magnitudes of the changes in the band-

edge energies are critically important for many semiconductor devices. A key parameter

that determines the functionality of the semiconductor heterojuction device is the band

offsets between the materials involved.

There have been numerous attempts and models to predict and calculate the energy

bandoffsets in the semiconductor heterostructures. Here, we restrict ourselves to a few

empirical rules and fundamental theoretical concepts which will be useful for the under-

standing of heterojunction band discontinuities.

Empirical rules

(a) Electron affinity model

The earlier attempts to describe band offsets theoretically assumed that band offset values

were determined by the intrinsic properties of each individual semiconductor. Therefore

the earlier studies attempted to place the electronic levels in every material on a single

absolute energy scale. Band offsets were then determined by the relative position of each

material on its absolute energy scale. The first such model was so called electron affinity

rule [33] postulated by Anderson, which states that the conduction band offset is given

by the simple difference in the electron affinities of the two heterojunction constituents.

Electron affinities are determined experimentally to obtain the conduction band offset.

Since the electron affinity is an experimental measure of the energy of the conduction

band edge relative to the vacuum level, the essential assumption of the electron affinity

rule is that the vacuum level serves as a valid common energy reference level for all

material. A major conceptual weakness of this rule is that the electron affinities reflect

potential shifts arising from surface electronic structure, rather than shifts that are due

to charge redistribution at an actual interface. A more practical consideration is that

large uncertainties in experimental electron affinity values results in large ambiguities in

predicted band offset values.
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(b) Common anion rule

In addition to the electron affinity rule, a number of other semiempirical rules have been

proposed for the prediction of the band offset values. The more widely quoted of these

have been the so-called common anion rules, proposed originally by McCaldin, McGill

and Mead [34] with a modified form later postulated by Menendez et. al [35]. The

physical motivation for the original common anion rule arises from the theoretical evidence

that the valence band states in compound semiconductors are predominantly from p-like

atomic orbitals of the anion [36]. Thus leading to the expectation that the position of the

semiconductor valence band edge on an absolute energy scale is determined principally by

the energies of the valence electrons of the anion. McCaldin et al. pointed out that the

Schottky barrier height for a large number of II-V and II-VI semiconductors depended

primarily on the electronegativity of the anion. It was later proposed [37] that this

correction might extend to valence band offset values as well, leading to the postulate

that, for a large number of compound semiconductors (materials containing Al being a

notable exception), the valence band offset in a heterostructure should depend only on the

difference ion the anion electronegativity for the two constituent materials. The physical

motivation of the original common anion rule arises from the theoretical evidence that, in

a compound semiconductors, the valence band states are derived mainly from the p-like

atomic orbitals of the anion. According to this (”common anion rule”) rule, the unstrained

valence band offsets between the valence band states of the two semiconductor materials

AX and BX which share an anion X should be zero. Early theories of band offset, such

as those of Harrison [38] and of Frensley and Kroemer [37, 39], were in general agreement

with the common anion rule, even for the compounds such as AlAs for which the common

anion rule was not claimed to be valid.

Experimentally [34, 40], however, this is not found to be the case and large discrepancies

are found between this empirical rule and the observed valence band offset. Wei and

Zunger [31] suggested that the deviations from the common anion rule arise largely from

the cation-d orbital contributions to the valence band structure, which were generally

omitted in early theoretical studies of the band offset. One can understand the band

offset observed in AlX/GaX semiconductors (X = N, P, and As) if one considers the
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semicore interaction. Ga has chemically active 3d states in its valence band, while Al

does not. The interaction of the semicore Ga 3d states with the anion derived p states in

the GaX modifies the valence band position and hence is believed to explain the offset.

Theoretical calculation of band offset: Models and methods

A number of theories have been proposed relating band offset values to the calculated

electronic properties of bulk semiconductors. In theoretical calculations the bulk band

structure is typically obtained relative to a reference level. A suitable alignment of the

reference levels in each semiconductors then yields values for the band offset.

Pseudopotential theory of Frensley and Kroemer [37, 39], is the first attempt to cal-

culate the band offset values without the use of the experimental data for the vacuum-

semiconductor or metal-semiconductor interface. In this theory a pseudopotential cal-

culation was used to obtain the bulk band structure for each semiconductor, with a

self-consistency condition enforced for the electrostatic potential and the charge density

calculated from the valence band functions. Once the individual bulk band structure

is obtained for the semiconductors, the band offsets in a heterostructure could be ob-

tained by matching the energies of the interstitial potentials for the two heterostructure

constituents.

This theory was refined [39] to include an approximate correction to account for het-

erojunction dipoles induced charge redistribution near the interface. By estimating the

effective charge on the atoms near the interface using the electronegativities of each atom

and its nearest neighbors an approximate calculation of the heterojuction dipole effects

was made. This scheme leads to an effective ”electronegativity potential” for each semi-

conductor. The correction to the band offsets for the heterojunction dipole effects was

then taken to be simply the difference in the electronegativity potential for the two het-

erojunction constituents.

Frensley and Kroemer [39] shows that the dipole correction for most lattice-matched

heterojunction pairs is typically few tenths of an electron volt or even less than that. For

lattice-mismatched hererojunction the apparent dipole corrections can be larger and the
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applicability of Frensley and Kroemer’s electronegativity potential in lattice-mismatched

heterojunctions is probably questionable.

Another early theory of heterojunction band offset was the linear combination of atomic

orbitals (LCAO) theory of Harrison [38]. The basis of the Harrison model is the linear

combination of atomic orbitals of a very small group of atoms which then used to calculate

the band structure. The band structure calculation would be correct if the true atomic-like

potentials and energy eigenfunctions of the atoms forming the semiconductor would be

known. Because the atomic-like potentials and eigen energies of the atoms in the crystal

lattice are unknown, Harrison simply took takes as unperturbed atomic energies values

the theoretical values of the free atoms. Hence this model is clearly an approximation. In

this model, several more approximations are employed for the calculation of the matrix

elements coupling the relevant atomic states between the nearest neighbors. The valence

band edge energies obtained using the LCAO approach are therefore automatically given

on the same energy determined by the individual atomic state energies, and the valence

band offset are determined just by taking the difference between the valence band edge

energies on this common energy scale for the two heterojunction materials. Conduction

band offsets can be determined from the valence band offset and the experimental band

gaps for each material. As was the case with the semiempirical rules and the original

theory of Frensley and Kroemer, Harrison’s LCAO theory does not include any correction

for heterojunction dipole effects.

A number of theories have been developed that include effects arising from the detailed

electronic structure of the specific semiconductor interface under consideration. Van de

Walle and Martin [41, 30] have calculated band offset values by using self consistent

local density functional theory and ab-initio pseudopotentials to compute the electronic

structure in each layer of a superlattice. The calculations of Van de Walle and Martin were

also the first to incorporate the effects of strain in lattice-mismatched heterojunctions,

where the Si/Ge heterojunctions were considered as a prototypical lattice-mismatched

material system. On the basis of their self-consistent local density functional calculations

for the Si/Ge and other heterojunction systems, they proposed a model solid theory of

band offsets [41, 30].
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In their model solid theory, an absolute electrostatic potential is computed for each

material by constructing the solid as a superposition of neutral atoms. The atomic poten-

tials can be placed on an absolute energy scale common to all the materials, and hence an

average electrostatic potential relative to the atomic potential can be defined in the solid.

This procedure resulted in good agreement with the results of the full self-consistent inter-

face calculations. The bulk band structure relative to the average electrostatic potential

within the solid is calculated using the ab-initio pseudopotentials and it is now possible

to define the position of the valence band edge in each material on the common energy

scale given by the atomic potentials and consequently to derive the band offset values for

various heterojunctions. Van de Walle [30] has also calculated the absolute deformation

potentials using the model solid approach, which allows to predict the band offsets in

strained heterojunctions.

Since the energy reference of the band structure can be related to the average electro-

static potential, it is sufficient to estimate the change in the average electrostatic potential

through the interface from a heterostructure calculation, and then align the bulk valence

band maxima accordingly to obtain the valence band offset. Bylander and Kleinman

[42, 43] used a method where the interfacial double-layer potential (∆V), induced by the

planar average of the difference between the superlattice and the bulk constituent charge

densities was used along with the bulk constituent eigenvalues of the valence band max-

imum, in order to determine the valence band offset. In the method of Baldereschi et

al. [44] running average across the unit cell, along the growth direction, of the xy planar

averaged potential is calculated to obtain a slowly varying curve for the potential, from

where it is a simple thing to read the potential shifts. In principle, one could also take

only one point (any point) from the electrostatic potential and compare that between the

interface calculation and the bulk calculation. In practice, due to charge redistribution

and geometric relaxations, a well-defined reference point in space should be chosen. An

example of such a point would be the potential in the core regions of the ions. Merely

from this reasoning, it is possible to write out the equation for the band offset between

the materials AX and BY
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∆Ev = (Ev[AX] − Vc[AX])b − (Ev[BY ] − Vc[BY ])b + (Vc[AX] − Vc[BY ])i

= (Ev[AX] − Ev[BY ])b + (Vc[AX]i − Vc[AX]b − Vc[BY ]i + Vc[BY ]b)

ie,

∆Ev = ∆Eb
v + ∆V i

c , (3.1)

where Ev[AX(BY )] is the valence band maximum and Vc[AX(BY)] is the electrostatic

potential at the core of a given type of an atom (anion or cation) located in the material

AX(BY). Superscripts b and i stand for the bulk and interface calculation, respectively.

Finally, ∆ Eb
v, is the lineup of the VBM between the bulk constituents AX and BY , and

∆ Vi
c, aligns the energy reference by combining the electrostatic potentials at the core of

some appropriately chosen anions or cations from the bulk and interface calculations.

Further justification for the use of the electrostatic potential at the atomic core, in

aligning the two bulk band structures can be found from the idea of the band offset

determination by the core-level photoemission spectroscopy [45]. In this approach, the

core levels are measured with respect to the valence band maxima. At the same time,

the change in the core-level energy from one side of the interface (AX) to the other (BY)

is also measured, so that the valence band offset ∆Ev at the heterojunction interface is

simply given by,

∆Ev = (Ev[AX] − Ecl[AX]) − (Ev[BY ] − Ecl[BY ]) + (Ecl[AX]i −Ecl[BY ]i), (3.2)

where Ev[AX(BY)] and Ecl[AX(BY)] are the valence band maximum and core-level

energy of the material AX(BY), far away from the interface, and Ecl[AX(BY)]i is the

corelevel energy at the AX(BY) side of the interface.

Using the core-level energies in determining the band offset is computationally prob-

lematic, since this approach requires, if not an all-electron method, at least a method with

deep core potentials and subsequently sufficient number of valence electrons active in the
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calculation. A comprehensive list of band offsets for binary materials calculated with this

approach, using the linearized augmented plane wave (LAPW) method, has been given

by Wei and Zunger [46].

The procedure followed by Wei and Zunger [46] is the following. To obtain the un-

strained ”natural” offsets, the core-to-valence band maximum (VBM) one electron energy

difference is calculated for AX (and similarly for BY) at their respective equilibrium ex-

perimental zinc-blende lattice constants. The core level difference is obtained here from

the calculation for the (AX)n/(BY )n superlattices with (001) orientation. In their studies

they find that for most of the systems n=3 is sufficient to converge (Ecl[AX]i −Ecl[BY ]i)

within 0.02 eV with the error been larger for systems with large lattice mismatch (e.g.,

GaN/GaAs). The method of Wei and Zunger [46] is what is followed in the literature to

determine band offsets.

Our interest in this problem was motivated by the important role played by the semicore

d states in determining the band offsets between lattice matched semiconductors. The

work by Wei and Zunger [31] pointed this out for the first time. This can be understood

as follows. Considering the example of GaAs, one finds that the valence band maximum

(VBM) which is derived from Γ point has t2 symmetry. The semi core Ga 3d states split in

the point ion limit into doubly degenerate e states and triply degenerate t2 states. These

states are depicted schematically Fig. 3.9. The levels with the same symmetry interact

and the energy level diagram taking into account the interactions is shown in the central

panel. Starting with t2(p) levels at the same position in GaX/AlX semiconductors, this

interaction pushes the antibonding levels to higher energies in GaX semiconductors. Our

earlier analysis in the chapter showed that even in GaN where the semicore states are

just 11 eV deeper than the valence band maximum, the semicore states do not play any

significant role in determining the equilibrium properties. Hence the suggestion of shifts

of 0.80 eV [46] arising from an interactions semicore d states with the valence states seems

unlikely.
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Figure 3.9: Schematic energy level diagram for the interaction of the Ga 3d states and X

p states.

3.3.2 Methodology

In this work we have carried out full potential linearised augmented plane-wave (FPLAPW)

calculations as implemented in the WIEN2k code to determine the unstrained valence

band offset between the common anion pairs of semiconductors GaN/AlN, GaP/AlP

and GaAs/AlAs. These are determined by aligning the X 1s core levels in two separate

FPLAPW calculations carried out for the bulk. However, this computation of the band

offset also includes the chemical shift of the core levels which must be subtracted out to

determine the shift of the valence band maxima alone. The chemical shifts have been

computed for the same core-levels considering a superlattice geometry of (AlX/GaX)3 in

the (001) direction as used earlier [46]. This method has some uncertainties associated

with it which we determine to be 0.020 eV. This is a result of the uncertainty in the

chemical shift associated with the core levels of same atom type.

The zinc-blende structure was considered for all the compounds. The lattice constants

of GaN, GaP, and GaAs were kept fixed at the experimental values of 4.52, 5.45 and 5.65
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Å respectively [32, 47], while those of AlX were kept fixed to the values of their GaX

counterparts. This was the case also for the superlattice geometry. For both Ga and X

(Al and X) the radii for the muffin tin spheres used were RMT = 1.20, 1.16 and 0.96 Å in

GaAs (AlAs), GaP (AlP) and GaN (AlN) respectively. In the calculations we use GMAX

= 14 and |K| < 9/RMT . A Γ centered grid of 8x8x8 was used in addition to the GGA

PW91 approximation [14] for the exchange functional. In the case of superlattice studies

k-points grid of 8x8x1 were considered.

There have also been earlier attempts [48] to estimate the role of p-d interactions

in the offset values. All these approaches have started with tight-binding Hamiltonians

whose parameters were determined from atomic calculations [49]. Hence agreement with

earlier theories was not really a ratification of the theory. Therefore, in this work, we

study the role of the semi core Ga 3d levels in modifying the core valence interaction,

by fitting the ab-initio band structure to a minimal spd tight-binding model. A tight-

binding Hamiltonian that included hopping between nearest neighbor anion-cation pairs

as well as second neighbor anion/cation pairs was considered. The parameters entering the

tight-binding Hamiltonian were determined by fitting to the ab-initio eigenvalue energies

at symmetry points by a least-square error minimization procedure. This is the first

time that a fully microscopic Hamiltonian that describes the valence and conduction

band structure of the GaX semiconductors has been used. Setting the semi-core valence

interaction to zero we determine the modification of the valence band offset coming from

semi core valence interaction.

Our studies suggest that the semi-core valence interaction cannot be the only explana-

tion for the large valence band offsets that one observes in these common anion systems.

We propose a new model for the observed valence band offset for these common anion

semiconductors by taking the cation-p anion-p interactions into account.

3.3.3 Results and Discussion

The valence band offset between the common anion pairs of semiconductors GaX/AlX

(X=N, P and As) have been calculated and found to be 0.72, 0.48 and 0.50 eV respectively

by the method outlined above. This is in agreement with other estimates [46] as well as
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other experimental estimates [50]. These contains two parts - the first due to purely elec-

tronic contributions, and the second due to charge transfer taking place at the interface.

As we are interested in just the electronic contribution to the band offset, we substract

out the contribution arising from the interface charge transfer to get 1.29, 1.04 and 0.81

eV respectively. Our interest is to set up a microscopic model to determine the electronic

interactions that determine the band offset. The first step in this direction is to set up a

minimal tight binding model. Examining the density of states given in Fig. 3.10 for GaX

and AlX semiconductors, the Ga s, p and d states contribute in the energy window -20 to

5-10 eV above Fermi energy (which is chosen to be the valence band maximum). Al s and

p states mainly contribute in the same energy range. On the anions we find s, p and d

states contribute in this energy window, except in the case of GaN where the contribution

of N d states is very small. In the case of GaX semiconductors the tight binding model

included s, p and d states on Ga and s, p, d∗ states on P and As (here d∗ corresponds

to the unoccupied d states), while in the case of N only s, p states were taken in the

basis. For the AlX tight-binding studies s, p states on Al and s, p, d∗ states on N, P and

As were considered. This choice of ours is similar to the earlier tight binding works [51]

where the only difference was that they did not include Ga d states in the basis. Before

we proceed with the fitting of the ab-initio band structure, the energy eigen values for

different materials have to have a common energy reference. This is done by aligning the

X 1s corelevel in the two materials comprising the heterostructure. Once the X 1s core

levels in the two separate GaX and AlX calculations are aligned we see that automatically

the other X core levels gets aligned within an error of 0.06 and 0.03 eV in the case of GaP

and GaAs. In the case of GaN we have just the core N 1s level. After aligning with the

X 1s core level and looking at the eigen values at the Γ point we see that the semicore X

2s, 3s and 4s level also gets aligned, within an error of 0.17, 0.08 and 0.04 eV in the two

separate sets (GaX and AlX) of calculations for X=N, P and As respectively.

This motivates us to impose a constraint on the tight binding parameters, which is

that the anion s onsite energy be the same in both the materials. A comparison of

the band structure - ab-initio as well as the tight binding fit are given in Figs. 3.11

and 3.12. The tight binding model is found to reproduce the ab-initio band structure

in the desired energy window. The fitted parameters are given in Tables 3.7 and 3.8.
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density of states for GaX and AlX semiconductors. The zero of energy corresponds to the

valence band maximum.
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Our fitted parameters matches quite well with earlier tight binding fitting method [51].

An interesting aspect that emerges from this analysis is that the X p and X d almost

get aligned up. An initial look at the tight binding parameters does not make our task

look easy as there are 40 parameters for GaX semiconductors and 27 parameters in AlX

semiconductors. However if we look at the tight binding Hamiltonian at the Gamma point

[49] we find that it block diagonalizes (Table 3.9) and one just has to consider the anion

p block interacting with the cation d and cation p blocks to explain the shifts in the band

offsets.

The contribution to the valence band offset from the interactions was determined by

switching off the interaction and observing the shift of the valence band maximum. The

shift was found to be 0.09 eV for GaAs, 0.1 eV for GaP and 0.16 eV for GaN. Hence p-d

interactions alone cannot explain the large band offsets that exist between GaX and AlX

semiconductors.

We next calculated the shifts in the VBM of GaX and AlX coming from the anion p

states and cation p states. The presence of cation-p and anion-p in GaX and in AlX moves

the VBM to lower energy. But the movement to the VBM in AlX towards lower energy is

more compared to GaX, this is because the separation between the cation-p and anion-p

levels are lower in the case of the AlX compared to GaX and moreover the estimated

cation-p and anion-p (p-p) interaction is larger in the case of AlX compared to GaX

(Tables 3.7 and 3.8). The overall effect of this interaction is the movement of AlX VBM

to lower energy with respect to the VBM of the GaX counterpart. From our tight binding

analysis we found of that the valence band offset that comes from this interactions is 0.59

eV for GaAs/AlAs, 0.91 eV for the GaP/AlP and 0.77 eV for GaN/AlN semiconductors.

Thus the total valence band offset that comes from these two interactions are 0.68 eV

for GaAs/AlAs, 1.01 eV for GaP/AlP and 0.93 eV for GaN/AlN. While the electronic

contribution to the band offset was earlier found to be 0.81, 1.04 and 1.29 eV in the case

of GaAs/AlAs, GaP/AlP and GaN/AlN respectively, thus out of this total 84%, 97% and

72% contribution comes from the p-d and p-p interactions in GaAs/AlAs, GaP/AlP and

GaN/AlN semiconductors respectively.
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Figure 3.11: Comparisons of the band dispersions obtained for GaN, GaP and GaAs, from

FPLAPW (solid lines) calculations and from TB fitting (open circles). Here the VBM of

GaX is set to zero of the energy.
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FPLAPW (solid lines) calculations and from TB fitting (open circles). Here X’1s core

level of AlX is aligned to the X’1s core of GaX and all energies been shifted so that the

VBM of GaX is set to zero of the energy.
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3.3.4 Conclusion

To summarize, the valence band offsets between common anion semiconductors have

been calculated. The role of p-d interactions in determining the valence band offsets have

been clarified for the first time. Quantitative estimates were obtained starting from a

microscopic Hamiltonian found to give a good description of the band structure of GaX

and AlX semiconductors. The results suggest that p-d interactions account only a small

percentage of the observed band offset while the main interaction that contribution comes

from the cation-p and anion-p interactions.
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Table 3.5: The relative shifts on the Ga and X (anion) core levels in units of eV with

respect to the X 1s core level.

Core level U (eV)

0 10 15

GaN

Ga 1s1/2 -9825.863 -9824.478 -9823.856

Ga 2s1/2 -881.193 -879.698 -879.027

Ga 2p1/2 -738.006 -736.518 -735.849

Ga 2p3/2 -710.420 -708.932 -708.262

Ga 3s1/2 230.453 231.524 232.003

N 1s1/2 0.0 0.0 0.0

GaP

Ga 1s1/2 -8130.089 -8129.483 -8129.223

Ga 2s1/2 814.301 814.972 815.259

Ga 2p1/2 957.513 958.178 958.464

Ga 2p3/2 985.096 985.761 986.047

Ga 3s1/2 1926.017 1926.523 1926.739

Ga 3p1/2 1972.305 1972.799 1973.010

Ga 3p3/2 1975.943 1976.431 1976.640

P 1s1/2 0.0 0.0 0.0

P 2s1/2 1901.728 1901.722 1901.720

P 2p1/2 1949.755 1949.749 1949.748

P 2p3/2 1950.668 1950.663 1950.662

GaAs

Ga 1s1/2 1485.670 1486.197 1486.420

Ga 2s1/2 10430.076 10430.660 10430.909

Ga 2p1/2 10573.286 10573.865 10574.111

Ga 2p3/2 10600.868 10601.448 10601.695

Ga 3s1/2 11541.798 11542.241 11542.429

Ga 3p1/2 11588.0860 11588.519 11588.703

Ga 3p3/2 11591.724 11592.153 11592.334

As 1s1/2 0.0 0.0 0.0

As 2s1/2 10207.062 10207.059 10207.059

As 2p1/2 10363.728 10363.726 10363.725

As 2p3/2 10400.200 10400.197 10400.197

As 3s1/2 11500.795 11500.795 11500.796

As 3p1/2 11553.433 11553.433 11553.435

As 3p3/2 11558.466 11558.466 11558.467
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Table 3.6: The calculated s, p, d and total components of the charge on Ga and X (X =

N, P and As) as functions of U , where a U has been introduced only on the Ga d states.

U (eV) s p d total

GaN

Ga 0 0.256 0.207 9.393 9.863

Ga 5 0.252 0.204 9.428 9.889

Ga 10 0.248 0.201 9.461 9.915

Ga 15 0.245 0.198 9.491 9.939

N 0 1.282 2.691 0.016 3.993

N 5 1.282 2.695 0.015 3.995

N 10 1.282 2.698 0.014 3.998

N 15 1.282 2.702 0.013 4.000

GaP

Ga 0 0.744 0.710 9.900 11.369

Ga 5 0.737 0.698 9.924 11.375

Ga 10 0.732 0.687 9.947 11.381

Ga 15 0.726 0.675 9.968 11.385

P 0 1.272 2.079 0.068 3.430

P 5 1.271 2.087 0.066 3.434

P 10 1.270 2.094 0.064 3.437

P 15 1.269 2.100 0.062 3.440

GaAs

Ga 0 0.820 0.746 9.932 11.515

Ga 5 0.814 0.734 9.954 11.518

Ga 10 0.808 0.722 9.975 11.522

Ga 15 0.802 0.710 9.996 11.524

As 0 1.341 1.902 10.025 13.278

As 5 1.340 1.910 10.023 13.282

As 10 1.338 1.917 10.021 13.286

As 15 1.335 1.924 10.020 13.288
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Table 3.7: Tight-binding parameters (in eV) obtained from a least-squared-error fitting

procedure for GaX semiconductors. The VBM of GaX is set to the zero of the energy.

GaN GaP GaAs

sc 8.63 1.62 0.97

pc 8.73 7.82 6.55

dc -13.23 -14.49 -14.78

sa -12.83 -8.64 -10.01

pa -1.01 -0.53 -0.41

da - 7.64 6.84

scsaσ -1.66 -1.58 -1.33

scpaσ 3.60 2.74 2.67

scdaσ - -2.03 -1.72

pcpaσ 3.03 2.83 2.94

pcpaπ -0.82 -1.03 -0.81

pcdaσ - -0.54 -0.50

pcdaπ - 1.63 1.28

dcdaσ - 0.0 0.0

dcdaπ - 0.0 0.0

dcdaδ - 0.0 0.0

pcsaσ -0.11 -1.55 -0.75

dcsaσ -0.76 0.0 0.0

dcpaσ 1.11 0.654 0.568

dcpaπ -0.00 -0.216 -0.318

scscσ -0.81 -0.31 -0.26

scpcσ 0.89 0.45 0.05

scdcσ -0.11 -0.21 -0.16

pcpcσ 1.33 0.01 0.28

pcpcπ 0.0 -0.02 -0.23

pcdcσ 0.12 0.01 0.0

pcdcπ 0.25 0.09 0.0

dcdcσ -0.01 -0.01 0.0

dcdcπ 0.02 0.01 0.01

dcdcδ 0.0 0.0 0.0

GaN GaP GaAs

sasaσ -0.01 0.0 -0.01

sapaσ 0.17 0.15 0.07

sadaσ - -0.12 -0.13

papaσ 0.35 0.25 0.31

papaπ -0.05 -0.15 -0.04

padaσ - -0.24 -0.31

padaπ - 0.15 0.13

dadaσ - -0.94 -0.84

dadaπ - 0.50 0.43

dadaδ - -0.09 -0.036
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Table 3.8: Tight-binding parameters (in eV) obtained from a least-squared-error fitting

procedure for AlX semiconductors. Here the X 1s core levels in AlX is aligned with that

of GaX and then setting the VBM of GaX to zero of the energy.

AlN AlP AlAs

sc 5.09 4.37 5.23

pc 6.52 6.37 6.47

sa -12.83 -8.64 -10.01

pa -1.01 -0.35 -0.45

da 10.12 7.01 6.98

scsaσ -1.72 -1.50 -1.22

scpaσ 2.95 3.15 3.14

scdaσ 0.0 -1.69 -2.07

pcpaσ 3.36 3.55 3.33

pcpaπ -0.52 -0.61 -0.63

pcdaσ -1.12 -0.50 -0.40

pcdaπ 2.07 1.94 1.80

pcsaσ -1.49 -2.11 -1.55

scscσ -0.56 -0.43 -0.49

scpcσ 0.10 0.24 0.32

pcpcσ 0.57 0.58 0.46

pcpcπ 0.0 -0.29 -0.28

sasaσ 0.0 0.07 -0.06

sapaσ 0.11 0.19 0.122

sadaσ -0.40 -0.13 -0.18

papaσ 0.40 0.29 0.27

papaπ -0.13 -0.01 -0.01

padaσ -0.25 0.0 0.0

padaπ 0.14 0.0 0.07

dadaσ -0.0 -1.14 -1.05

dadaπ 0.0 0.44 0.40

dadaδ 0.0 0.0 0.0
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Table 3.9: The LCAO Hamiltonian matrix at Γ point for the zinc-blende structure taking

the s, p, d of cation and s,p of anion in the basis. At Γ point the matrix can be divided

into two block diagonal matrices as shown below.













sc sa dc
x2−y2 dc

3z2−r2

sc ǫcs 4Ess 0 0

sa 4Ess ǫas 0 0

dc
x2−y2 0 0 ǫcd 0

dc
3z2−r2 0 0 0 ǫcd





















































pc
x pc

y pc
z dc

xy dc
yz dc

zx pa
x pa

y pa
z

pc
x ǫcp 0 0 0 0 0 4Exx 0 0

pc
y 0 ǫcp 0 0 0 0 0 4Exx 0

pc
z 0 0 ǫcp 0 0 0 0 0 4Exx

dc
xy 0 0 0 ǫcd 0 0 0 0 4Epd

dc
yz 0 0 0 0 ǫcd 0 4Epd 0 0

dc
zx 0 0 0 0 0 ǫcd 0 4Epd 0

pa
x 4Exx 0 0 0 4Epd 0 ǫap 0 0

pa
y 0 4Exx 0 0 0 4Epd 0 ǫap 0

pa
z 0 0 4Exx 4Epd 0 0 0 0 ǫap









































where the onsite s, p and d energies of cation are given by ǫcs, ǫ
c
p and ǫcd respectively, while

the onsite s and p energies of the anion are given by ǫas and ǫap. The inter-atomic matrix

elements are given by the Slater Koster parameters [52] as given below:

Ess= Vssσ

Exx= Vppσ/3 + 2Vppπ/3

and Epd= -Vpdσ/3 + 2Vpdπ/(3
√

3)
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Chapter 4

Quantum confinement of nanostructures

In this chapter we have examined two aspects of nanostructures, the first being the evo-

lution of the electronic structure of quantum wells of the most well-studied materials

GaAs/AlAs and the second being the evolution of the conduction band bottom as a

function of nanoparticle size of semiconductor quantum dots.

4.1 GaAs/AlAs heterostructures

4.1.1 Introduction to heterostructures

A semiconductor heterostructure is formed when two different semiconductors are grown

in contact. The layer thicknesses in heterostructures can be controlled over a length scale

comparable to or smaller than the electron de Broglie wavelength. This results in novel

quantum effects related to size. Quantum well structures can be designed to perform

special functions that are the core of many modern quantum devices. For example,

quantum well laser and high electron mobility transistor (HEMT) are well-developed

quantum devices. Quantum well lasers are extensively employed in optical communication

systems, bar-code scanners, laser arrays and optical disc readers/writers; whereas HEMTs

are used in low-noise receivers, digital integrated circuits and microwave circuits [1].

In practice, different semiconductors are ”brought into contact” by epitaxially grow-

ing one semiconductor on top of another semiconductor. To date, the fabrication of

the heterostructures by epitaxial method, such as Molecular Beam Epitaxy (MBE) and
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Metal-Organic Vapor-Phase Epitaxy (MOVPE), is the cleanest and the most reproducible

method available. Since the two materials usually have different band gaps the properties

of the materials significantly change at the interface. To prevent any dislocation formation

due to any strain effects it is preferred to have lattice matched heterostructures.

The magnitudes of the changes in the band-edge energies are critically important for

many semiconductor devices. The double junction heterostructures are known as quantum

wells (QW) and the multi-junction structures as superlattices (SL) or multiple quantum

wells (MQW). The types of band alignments in quantum wells is classified according to

the relative ordering of the band-edge energies as shown in the Fig. 4.1.

The most common (and generally considered to be the ”normal”) alignment is the

straddling configuration. However, the band gaps need not entirely overlap. The con-

duction band of the smaller-gap material might lie above that of the larger-gap material,

or its valence band might lie below that of the larger-gap material. Such a band align-

ment is called staggered. The staggering might become so extreme that the band gaps

cease to overlap. This situation is known as a broken gap. From the engineering point of

view, straddling is known as type-I while staggered and broken are known as type-II. In

type-I quantum wells electrons and holes are confined in the same layers, while in type-II

quantum wells electrons and holes are not spatially confined in the same region. In usual

semiconductor after the photoexcitation electrons and holes typically stay in the same

region which results in the maximized wavefunction overlap of the electron and hole and

thus yielding a high radiative recombination rate. This is what is observed in type-I het-

erostructures, which makes it ideal in light emitting devices. However in many of the other

devices like in dye-sensitized solar cells [2] and even in the usual solar cells the efficient

charge separation of the electron and hole after photoexcitation is highly preferred. In

type-II heterostructures the photogenerated carriers are spatially separated such that the

electron wavefunction mainly resides in one semiconductor while the hole wavefunction in

the other, which make them ideal materials for photovoltaic devices for its long range pho-

toinduced charge separation, which can efficiently separate photo-generated electron-hole

pairs in each semiconductor material and reduce their recombination [3]. The recombina-

tion times of electrons and holes are long in type-II heterostructures.
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Figure 4.1: Types of band alignment (a) straddling (b) staggered (c) broken

Experimentally, quantum wells are formed by sandwiching a narrower band gap semi-

conductor (the well) with the wider band gap materials as adjacent layers (the barriers)

and thereby attaining type-I arrangement. The relative heights of the discontinuities in

the conduction band (CB) and valence band (VB) edges are intrinsic properties of the two

materials involved. The motion of the electrons in the x-y plane is unrestricted. Thus, the

one-dimensional confinement effect occurs in QW which is used to engineer the electronic

properties of the materials [4]. The width of the quantum well determines whether the

confinement effect will be important. The properties of the QW is determined by the

band gap energies and by the chemical composition and thickness of the layers.

4.1.2 What is know about GaAs/AlAs superlattices

These systems have been extensively studied by means of optical and/or electrical mea-

surements as well as numerous calculations with varying degrees of sophistication. In all

the different cases studied in these superlattices, where the thickness of GaAs and AlAs

were changed, the top of the valence band is always confined to the GaAs region, while

localization of the conduction band bottom in the AlAs or GaAs region depends on the

thickness of the layers considered.

J. Ihm [5] studied the effects of the layer thickness on the electronic character in

GaAs/AlAs superlattices using an empirical tight binding method. Here they identify
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three regions of the short-period superlattices based upon m (number of monolayers in

each GaAs layers) and n (number of monolayers in each AlAs layers). Each monolayer

thickness is half the lattice constant of the material, ie having 2 atomic layers i.e., Al and

As or Ga and As. In region I (m > 10 and n= any value) the lowest electronic states are

in the Γ states in the GaAs layers. In region II (m < 10 , n> m) the lowest conduction

band states are in the X states in the AlAs layers. They observe an intermediate region

III, with m > n and both n and m < 10, where the superlattice exhibits alloy-like behavior

(giving rise to both direct and indirect gap for certain m and n values). The transition

between region I and region II superlattices is not abrupt.

Combining the techniques of photo-luminescence and photo-luminescence excitation

spectroscopy K. J. Moore et al. [6] mapped out both direct Γ-related band gap and

X-Γ band gap as a function of AlAs thickness. They observed that for the fixed GaAs

thickness at 25 Å the band alignment shows type-II when the AlAs thickness is greater

than 15 Å. For AlAs thickness less than 10 Å they observed a type-I behavior. They

could adequately describe the electronic states by the envelope function approach, where

one of the main parameters determining the energies of the quantum confined systems is

the effective mass.

M. C. Munoz et al. [7] carried out empirical tight binding studies on GaAs/AlAs

superlattices, over a broad range of values of n and m ((2,2)<=(n,m)<=(22,22)), classified

the superlattice into four different regions depending on the type of band alignment as a

function of (n,m). The four region are classified as follows: Region I- The gap is direct

and the amplitude is confined to GaAs. This corresponds approximately to the region I

of J. Ihm studies [5]. Region II- The lowest conduction band state is confined to the AlAs

layers. In bulk AlAs crystal this would be an X state and the gap would be indirect, but

here the conduction band minimum is at the Γ point and the gap is direct. Electron and

holes are separated in real space but the two band extrema have the same momentum in

the reciprocal space of the superlattice. Region III- This is an intermediate zone between

the region I and region II where the superlattice has direct band gap and the spectral

strength of the bottom of the conduction band is distributed between the two constituents.

Region IV- Here the electrons and holes separated in both real and momentum space. This

region is found in [5] but [7] finds the same for much smaller range of (n,m) values.
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R. Cingolani et al. [8] studied the transition from a type-I to type-II superlattice

occurring in GaAsm/AlAsn ultra-short-period superlattices at certain critical layer thick-

nesses using spectroscopic techniques. They also compared their experimental data’s

with theoretical calculations for the quantized sub-bands in the superlattices employing a

Kronig-Penny formalism based on the Bastard envelope function approximation [9]. They

found the crossover between the direct and indirect optical transition occurs when the

well and barrier are each composed of 12 monolayers.

J. G. Menchero et al. [10] studied the band-edge states for GaAs quantum well em-

bedded in AlAs spacer layers, near the critical well width for which the fundamental

transition goes from direct to indirect. Studies were done using real space tight-binding

analysis and the results were compared with models taking first (1NN) and second near-

est neighbor interactions (2NN) into account. Both 1NN and 2NN models provided the

same description of the first hole state. For the first electron state, however, important

differences arise. Although the critical width is the same in both models, for the 2NN

approach the indirect-gap regime is characterized by the wavefunction escaping from the

well into the AlAs barriers, but keeping the same translational symmetry. In the 1NN

approach, the transition is characterized by a change in translational symmetry, and the

wavefunction may or may not remain localized in the well. Their 2NN approach is in

complete agreement with the theoretical results of Franceschetti and Zunger [11] which is

based on an empirical pseudopotential approach.

Till now there is no ab-initio work in this regime and this makes our work important.

Here we also track the evolution of the wavefunction, corresponding to the first hole state

and first electron state, as a function of well size as well as under negative pressure.

4.1.3 Methodology

In the present work we consider GaAs/AlAs (001) superlattices with fixed total number

of principal layers (n+m=48). Here n (m) is the number of principal layers of AlAs

(GaAs). Each principal layer (layer) includes two atomic layers of cation and anion,

thus resulting in a total of 96 atomic layers in these superlattices. All the calculations

presented here are performed within a supercell scheme. Our supercell is constructed
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from a 1x1x24 zinc-blende cubic cell (lattice constant was kept at the experimental lattice

constant of the material i.e., 5.65 Å) and contains 192 atoms in total. Here we consider full

optimization of the internal positions. In order to study the effect of pressure on there

superlattices we considered a larger lattice constant of 5.73 Å which is the theoretical

optimized lattice constant. We use periodic boundary conditions in all directions. GGA-

PW91 approximation [12] has been used for the exchange. A dense Γ centered k-points

grid of 6x6x1 was used in the calculations. The energy cutoff used for the kinetic energy

of the plane waves used in the basis was 240.4 eV.

4.1.4 Results and Discussion

Few monolayers of GaAs sandwiched between AlAs layers : Studies near the critical GaAs

thickness where the system undergoes a transition from type-II to type-I superlattice

In Fig. 4.2 we have plotted the planar averaged charge density corresponding to the

valence band maximum as a function of the growth direction for 7, 11, 15, 19 and 23

atomic layers of GaAs sandwiched between AlAs. The position of Al, Ga and As atoms

has also been indicated. As one expects the primary contribution to the valence band

maximum is from the As atomic layer and this is indeed what we find and the peaks in

the charge density occur in the As atomic layer and the minima occur in the atomic layers

containing the cation site. The boundaries of the quantum well have been indicated by

dashed lines. The wavefunction corresponding to the valence band maximum is localized

primarily in the GaAs well region as is expected. A small portion tunnels into the AlAs

barrier region also. Interestingly the percentage of charge density that has tunneled

through increases with quantum confinement (Table.4.1). This can be understood in

the following manner. With increased quantum confinement, the separation between the

valence band maximum of GaAs and AlAs decreases, hence the effective barrier. This

results in increased tunneling. A consequence of the increased quantum confinement on

the conduction band edge brings about a reversal with the conduction band minimum

of AlAs being lower than that of GaAs at 7 and 11 atomic layers. This corresponds

to a well thickness of 19.8 Å and is slightly less than the thickness of 25 Å found by

pseudopotential and tight binding approaches [11, 10]. The charge density corresponding
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to the conduction band minimum of the 7 and 11 atomic layers is shown in Fig. 4.3. As a

consequence of the type-II transition discussed above, the wavefunction here is localized

in the AlAs region. For thicker GaAs well regions there is an abrupt transition to type-I

behavior. The charge density profile after the transition (Fig. 4.4) does not show an

oscillatory behavior as observed in Figs. 4.2 and 4.3.

While a fully atomistic approach is useful, most of the physical insight into the problem

has been obtained from empirical approaches. So the first question we asked was where

are the deviations. Merely capturing the strong oscillations of the wavefunctions did not

seem reason enough to carry out this computationally demanding exercise which has not

been done before because of the computational costs. Well there were suprises.

The simplest approximation to the particle in a potential well is the textbook example

of a particle in a box with finite barriers where realism is maintained by using the effective

mass derived from the bulk band structure for the hole and electron respectively. The

ground state wavefunction for the problem consists of a nodeless sine/cosine function in

the well region which decays exponentially into the barrier region and may be solved

numerically. The envelope of the charge density plot of the conduction band minimum

should correspond to the result expected from the effective mass approach. A similar

analysis is valid for a hole at the top of the valence band.

Armed with this expectation we first examine the envelope of the charge density cor-

responding to the valence band maximum for 7, 11, 15, 19 and 23 atomic layers of GaAs

(Fig. 4.5). This is expected from the particle in a finite potential well problem. In addi-

tion to the outer envelope (corresponding to the maxima of the charge density) we have

also plotted the inner envelope (corresponding to the minima of the charge density).

In the effective mass approximation the inner envelope should be zero and this is what

we find largely. When we examine the results for the conduction band minima (Fig. 4.6)

for the 7 and 11 atomic layers, the outer envelope offers no suprise. However the inner

envelope is suprisingly large with a shape very similar to the outer envelope. This is a

consequence of the significant weight of the wavefunction in this case on both the cations

and anions. The profile of the outer envelope changes drastically when we consider 15,

19 and 23 atomic layers of GaAs comprising the well region (Fig. 4.7). This has been
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Figure 4.2: Variation of the planar averaged charge density plot of the VBM for (a) 7,

(b) 11, (c) 15, (d) 19, and (e) 23 atomic layers of GaAs sandwiched cases in the fixed

GaAs/AlAs 96 atomic layer superlattice. The interface As layer is shown by dashed lines.

observed earlier in the simple tight binding models by Menchero el al. [10] and suggests

that the approximation to a simple potential well problem is not valid and the potential

is far more complicated.

We then went on to examine the effects of pressure. For this purpose we considered the

theoretical lattice constant of GaAs and compared the results. Fig. 4.8 shows that the

valence band maximum charge density profile for the 7 atomic layers where the atomistic

variations as well as the outer envelope are shown in the same plot. There are no suprises

here. Moving to the conduction band minimum charge density (Fig. 4.9) we find that

the unlike at the lattice constant of 5.65 Å, here, the band alignment is type-I. Thus the

effect of a small negative pressure is sufficient to offset the type-I to type-II transition

observed earlier.
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Figure 4.3: Variation of the planar averaged charge density plot of the CBM for (a) 7 and

(b) 11 atomic layers of GaAs sandwiched cases in the fixed GaAs/AlAs 96 atomic layer

superlattice. The interface As layer is shown by dashed lines.
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atomic layer superlattice. The interface As layer is shown by dashed lines.
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Figure 4.5: Variation of the outer and inner envelope of the planar averaged charge

density plot of the VBM for (a) 7, (b) 11, (c) 15, (d) 19, and (e) 23 atomic layers of GaAs

sandwiched cases in the fixed GaAs/AlAs 96 atomic layer superlattice. The interface As

layer is shown by dashed lines.
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CBM for (a) 15, (b) 19, and (c) 23 atomic layers of GaAs sandwiched cases in the fixed

GaAs/AlAs 96 atomic layer superlattice. The interface As layer is shown by dashed lines.
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Figure 4.8: Variation of the planar averaged charge density plot of the VBM for 7 atomic

layers of GaAs sandwiched cases in the fixed GaAs/AlAs 96 atomic layer superlattice

with a lattice constant of 5.73 Å. The interface As layer is shown by dashed lines. The

envelope of the plot is marked in thick dashed line.
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Figure 4.9: Variation of the planar averaged charge density plot of the CBM for 7 atomic

layers of GaAs sandwiched cases in the fixed GaAs/AlAs 96 atomic layer superlattice

with a lattice constant of 5.73 Å. The interface As layer is shown by dashed lines. The

envelope of the plot is marked in thick dashed line.
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Table 4.1: Percentage of VBM and CBM contribution in the GaAs well region for different

sizes of well sizes considered in the fixed GaAs/AlAs 96 atomic layer superlattice.

Number of layers in the well region well size Percentage Contribution of

Ga As total atomic layers (Å) VBM CBM

3 4 7 8.5 59 0.04

5 6 11 14.2 79 0.04

7 8 15 19.8 89 60

9 10 19 25.5 94 79

11 12 23 31.1 96 85

Moving to other limit : Few monolayers of AlAs sandwiched between GaAs layers

We then considered the other limit where we had few atomic layers of AlAs sandwiched

between GaAs. There should be no confinement of either electrons or holes in the present

case. Plotting the valence band charge density (Fig. 4.10) we find that the wavefunction

is localized in the GaAs region with no tunneling into the AlAs region.

The envelope of the conduction band minimum charge density for 7, 11, 15, 19 and

23 atomic layers of AlAs sandwiched in the 96 atomic layer superlattice of GaAs/AlAs

is shown in Fig. 4.11. Tunneling is found into the AlAs layer upto around two atomic

layers. A closer analysis of the plots reveals suprises. For 7 AlAs atomic layers one finds

the envelope of the charge density corresponding to the valence band maximum takes on

a beat-like profile with several Fourier components (Fig. 4.12 (a)). Increasing the lattice

constant to 5.73 Å one finds that the envelope for the same number of atomic layers

resembles a sine function (Fig. 4.12 (b)). The emergence of several Fourier components

indicates the emergence of some super structure (Fig. 4.13). This is clearest for n=7 layers

of AlAs sandwiched between GaAs. At a lattice constant of 5.73 Å, one finds a buildup

of charge density away from the centre of the potential well. The almost two humped

structure that one finds could arise from a scenario where the electron wavefunction

redistributes itself to minimize the Coulomb repulsion energy. This is the reason it is

more prominent in the larger lattice constant cases. Further modelling will be done in

terms of microscopic models to see if one can capture this regime for GaAs/AlAs with
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Figure 4.10: Variation of the planar averaged charge density plot of the VBM for (a) 7,

(b) 11, (c) 15, (d) 19, and (e) 23 atomic layers of AlAs sandwiched cases in the fixed

GaAs/AlAs 96 atomic layer superlattice. The interface As layer is shown by dashed lines.

The envelope of the plot is also marked.

realistic parameters.

4.1.5 Conclusion

Studies on GaAs/AlAs superlattices varying the GaAs and AlAs layers, but keeping the

total number of layers of the superlattice fixed, were done. Here we studied the type of

band alignment and the nature the VBM and CBM wavefunction envelope in different

cases considered. When we have few GaAs layers sandwiched between the AlAs layers

we see a transition of the superlattice from type-II to type-I. The critical thickness of the

GaAs well at which the transition occurs was found to be around 20 Å. Studying the other

limit were few AlAs is sandwiched between the GaAs layers we see that the superlattice is
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Figure 4.11: Variation of the planar averaged charge density plot of the CBM for (a) 7,

(b) 11, (c) 15, (d) 19, and (e) 23 atomic layers of AlAs sandwiched cases in the fixed

GaAs/AlAs 96 atomic layer superlattice. The interface As layer is shown by dashed lines.

The envelope of the plot is also marked.
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Figure 4.12: Variation of the planar averaged charge density plot of the VBM for 7 atomic

layers of AlAs sandwiched cases in the fixed GaAs/AlAs 96 atomic layer superlattice with

a lattice constant of (a) 5.65 and (b) 5.73 Å. The interface As layer is shown by dashed

lines. The envelope of the plot is marked in thick dashed line.
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Figure 4.13: Variation of the planar averaged charge density plot of the CBM for 7 atomic

layers of AlAs sandwiched cases in the fixed GaAs/AlAs 96 atomic layer superlattice with

a lattice constant of (a) 5.65 and (b) 5.73 Å. The interface As layer is shown by dashed

lines. The envelope of the plot is marked in thick dashed line.
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always type-I. Our studies on VBM wavefunctions i.e., the ground state wavefunction of

the holes, agrees quite well with the nature of the ground state wavefunction one expects

from a particle in a potential well problem while the CBM wavefunctions (the ground

state wavefunction of the electrons) deviates from the particle in a potential well problem

for certain n (m) layer sizes.
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4.2 Size dependence on the conduction band minimum of semi-

conductor nanocrystals

4.2.1 Introduction

One of the defining features of a semiconductor is the energy gap separating the conduction

and valence energy bands. The color of light emitted by the semiconductor material

is determined by the width of the gap. In semiconductors of macroscopic sizes- bulk

semiconductors -the gap width is a fixed parameter determined by the materials identity.

The situation changes, however, in the case of nanoscale semiconductor particles with sizes

smaller than about 10 nanometers. This size range corresponds to the regime of quantum

confinement, for which the spatial extent of the electronic wave function is comparable

with the dot size. As a result of these geometrical constraints, electrons feel the presence

of the particle boundaries and respond to changes in particle size by adjusting their energy.

This phenomenon is known as the quantum-size effect, and it plays a very important role

in quantum dots (QDs). The size regime in which one has such size dependence varies

from material to material and could be as large as 200 Å for PbS or as small as 40 Å for

CdSe. In the first approximation, the quantum-size effect can be described by a simple

”quantum box” model in which the electron motion is restricted in all three dimensions

by impenetrable walls. For a spherical QD with radius R, this model predicts that a size

dependent contribution to the energy gap is simply proportional to 1/R2, implying that

the gap increases as the QD size decreases. In addition, quantum confinement leads to a

collapse of the continuous energy bands of a bulk material into discrete, atomic-like energy

levels. The discrete structure of energy states leads to a discrete absorption spectrum of

QDs, which is in contrast to the continuous absorption spectrum of a bulk semiconductor

Here we focus on the effects of quantum confinement on the electronic structure of two

prototypical semiconductors - CdSe and GaAs. Most of the studies have focused on size

dependent shifts of the valence band maximum as well as the conduction band minimum.

Scaling laws have been derived from experimentally determined shifts and contrasted with

1This section is based on the following paper:

R. Cherian, A. Kumar, and P. Mahadevan, Effects of quantum confinement on the conduction band

minimum of semiconductors J. Nanoscience and Nanotechnology, 9, 5673 (2009).
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various theoretical calculations [13]. Unfortunately the theoretical calculations that can

calculate the electronic structure over the entire size range are limited to semi-empirical

approaches such as tight binding [14, 15], effective-mass, charge patching [16] or empirical

pseudopotential. Each of these predict a different scaling behavior. Coupled with the

experimental uncertainties of pinned Fermi levels, one is unsure of the exact trends. In

this context ab-initio calculations would be extremely useful, although restricted to the

small size regime. To date the only report of the shifts from ab-initio calculations appears

to be from Puzder et al. [17], though it is not entirely clear how they align the conduction

band minima from different calculations. While we report the conduction band minimum

shifts from the ab-initio calculations, the size regime is too small to determine the scaling

laws.

4.2.2 Methodology

The electronic structure of the clusters was calculated within a plane wave pseudopotential

approach using the implementation in VASP. GGA PW91 approximation [12] to the

exchange has been used for CdSe and GaAs and the calculations were performed at

Gamma point alone. A cut off energy of 250.0 eV was used for the plane wave basis for

GaAs calculations while we used 274.3 eV for CdSe. In the case of GaAs clusters the

semi core 3d states on the Ga were treated as a part of the core (refer section 3.1). As

we use a plane wave implementation of density functional theory applicable to periodic

systems, we consider a periodic array of nanocrystals separated by 10 Å of vacuum.

Increasing the vacuum to 20 Å changed the band gap by 2 meV. Hence 10 Å of vacuum

was adequate. We construct nanocrystals by cutting a spherical fragment of a bulk

crystal, which has an underlying geometry of the zinc-blende structure. We had considered

passivated spherical nanocrystals having 3 to 6 layers of atoms about the center atom

(n=3 to n=6 nanocrystals) as discussed in Chapter 6. All atoms were relaxed to attain

the minimum energy configuration. The equilibrium volume of the relaxed structure was

determined using the convex hull formed by the surface atoms. This was then mapped

to a sphere and the corresponding radius determined is referred to in our subsequent

discussion.
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Figure 4.14: Variation of planar averaged electrostatic potential as a function of distance

for the CdSe nanocrystal having a volume of 2662 Å3.

In order to determine the conduction band shifts as a function of size we need to

be able to compare the conduction band minimum from different calculations. A direct

comparison is not possible as the zero of the different calculations need not be the same.

In this context we borrow the concepts that have been used earlier in the theoretical

calculations of the band offsets. We illustrate the basic principle for the spherical cluster of

CdSe which has a volume of 2662 Å3 . The planar averaged electrostatic potential has been

plotted as a function of distance (Fig. 4.14). This value is constant in the vacuum region

of the cluster. The conduction band minima from different calculations are referred to this

average electrostatic potential. For the calculation of the bulk conduction band minimum

with respect to the vacuum, a symmetric slab of 11 layers was considered growing in the

(001) direction. In addition a vacuum of 10 Å was included in our calculations. The

surface of the slab was passivated with pseudo-hydrogens. A gamma centered k-grid of

6x6x1 was used for the calculation. We start with the optimized bond lengths of the bulk

for the slabs but perform geometry optimization of the structure, restricting to the Td

point group symmetry.
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Figure 4.15: Variation of the band gap as a function of the cluster size for (a) GaAs and

(b) CdSe.

4.2.3 Results and Discussion

In Fig. 4.15 we have plotted the variation of the band gap as a function of cluster size for

GaAs and CdSe. An almost monotonic increase is found with decreasing cluster size. In

Fig. 4.16 we have plotted the variations of the conduction band minimum in CdSe and

GaAs as a function of particle size. This is of special interest as the work by Puzder et

al. suggested a pinning of the conduction band minimum for small sizes. However, we do

not find any such pinning for the systems that we have studied as well as in the size range

that we have considered. For both systems we find a monotonic decrease as a function

of particle size, though the changes seem significant for CdSe than for GaAs for a similar

size change. Further, we find that for the largest CdSe particles considered by us in our

calculations, the deviation of the conduction band minimum from bulk like values is small

in contrast to other empirical approaches [14, 15, 16]. A comparison is provided in Table
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of nanocrystals size for (a) GaAs and (b) CdSe.

4.2.

4.2.4 Conclusion

We have extracted absolute values of conduction band shifts from ab-initio calculations.

The scheme has been applied to GaAs as well as CdSe. While a monotonic decrease of

the shifts is found as a function of size, the dependence is faster in the case of CdSe and

deviations from bulk-like values are quite small for the largest size considered by us.
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Table 4.2: Comparison showing the deviation of the CBM (eV) for various sizes of CdSe

nanocrystals from the bulk values within our present work and other empirical approaches.

Cluster size Radius C.P Theory T.B Theory T.B Theory Present Work

(n) (Å) [16] [14] [15]

3 5.7 1.6 1.3 1.8 1.25

4 6.2 1.5 1.25 1.6 0.93

5 8.6 1.2 0.9 1.4 0.72

6 10.33 1.0 0.75 1.0 0.17
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Chapter 5

Ferromagnetism in Mn doped dilute III-V alloys

5.1 Introduction

Dilute magnetic semiconductors have been intensively studied in recent times with the

intention of replacing conventional electronic devices with those based on these materials

[1]. No real devices have been realized so far and the interest in this field has been

based on concept devices. An essential aspect of dilute magnetic semiconductors based

devices is the manipulation of the spin of the electron which one would like to do at

room temperature. Hence the search is on for a room temperature ferromagnet. One

material that has been intensively studied for this purpose is Mn doped GaAs [2]. The

ferromagnetic Curie temperature (Tc) are still far from desirable reaching a maximum

of 250 K in specially designed superlattices [3]. Alternate materials such as transition

metal atoms doped in II-VI semiconductors [4], perovskite oxides [5], other oxides [6],

III-V semiconductors and chalcopyrites [7] have been synthesized and studied and the

search is on for the most suitable material. In this work we confine our attention to Mn

doping in III-V semiconductors. Theoretical calculations predict a higher ferromagnetic

stabilization energy for Mn in GaN than in GaAs [8]. However, the main conclusion from

experiments is that the effective interaction between the Mn atoms is antiferromagnetic [9]

or could be weakly ferromagnetic [10]. Strong ferromagnetism has been observed though

the origin seems to be the presence of ferromagnetic clusters of Mn present at large doping

1This chapter is based on the following paper:

R. Cherian, P. Mahadevan, and C. Persson, Trends in Ferromagnetism in Mn doped dilute III-V alloys

from a density functional perspective, Phys. Rev. B.79, 195211 (2009).
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concentrations [11].

In this work we examine an alternate strategy to obtaining high Curie temperatures by

considering dilute alloys of III-V semiconductors. Strong valence band bowing is expected

in the dilute limit in some cases, and we want to use that to modify the ferromagnetic

stability. These ideas are not new to the current work and have been proposed earlier in

the literature [12]. However there is no detailed theoretical work which has examined the

electronic structure, modified interaction strengths and the consequent implications on

the Tc. The basic idea that one aims to exploit here is to use semiconductors with band

edges energetically closer to the Mn 3d levels. This increases the hydridization between

the host anion p states and the Mn d states. This however results in a deep acceptor

level in the band gap. Thus the ferromagnetism-mediating holes are more localized. A

system that has been proposed as a strong candidate is a dilute alloy of GaAs with

GaP. The hope is that the itinerancy of the carriers is retained while the p-d exchange

is enhanced because of the shorter Mn-anion bond lengths. LDA+U/coherent potential

approximation (CPA) based calculations [13] have looked at 25%, 50%, 75% alloys of

GaAs and GaP and found a modest increase in Tc. Experiments [14, 15] have looked at

the dilute limit of Ga1−xMnxAs1−yPy and Ga1−xMnxAs1−yNy with y ∼ 0.01-0.04. There

is a strong decrease in Tc with increasing y even at this dilute limit. As the dilute limit

has not been studied theoretically we examine whether the experimental trends may be

captured within our calculations and if not, then the cause is due to extraneous factors

not included in the present approach. We are able to capture the reduction of Tc in GaAs

alloyed with GaN as well as the case of GaAs alloyed with GaP.

5.2 Methodology

In order to address these issues we have considered 216 atom supercells of GaAs, GaP and

GaN. One Mn was placed at the origin while the second was placed at the fourth FCC

neighbor position as earlier work has shown that the ferromagnetic stability is strongest

for Mn atoms at these positions [16]. We consider dilute III-V alloys as the host semicon-

ductor into which Mn is doped. In order to form the dilute III-V alloys a group V anion

impurity is codoped at different distances on the line perpendicular to the line joining
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the two Mn sites. For GaAs alloyed with GaP we included higher dopant concentrations

also. The optimized lattice constants for the GaAs, GaP and GaN are 5.72, 5.49 and

4.52 Å respectively. The lattice constant of the supercell is set according to Vegard’s

law for the III-V alloy. Full optimization of the internal positions is carried out within

the first principle electronic structure calculations using a plane wave pseudopotential

implementation of the density functional theory. A plane wave cutoff of 400 eV was used

for the basis set. The electronic structure was solved considering the generalized gradient

approximation for the exchange at Gamma point alone using projected augmented wave

(PAW) potentials [17].

5.3 Results and Discussion

We first consider the case of the As doped into GaN. GaN we know has a large band offset

with GaAs with the former having a deeper valence band maximum. Mn when doped

into GaN has been shown to introduce states into the band gap with significant Mn

character. However, in contrast, Mn when doped into GaAs is found to introduce states

with weak Mn character in the band gap. Although in both cases the formal oxidation

state of the Mn is 3+, in the former case the configuration is d4 while in the latter case is

{d5+ hole}[18]. Since at this dilute limit, alloys show significant band bowing effects, we

investigate Mn doping in this limit to probe modifications in the ferromagnetic stability.

In Fig. 5.1 we have plotted the Mn d partial density of states. The N p partial density of

states of a N atom which is nearest neighbor of the Mn as well the As p partial density of

states have been shown. The valence band maximum seems to comprise of primarily As p

states with some N p admixture. However there is hardly any As p character at the Fermi

level. We can understand this effect within a simple model that was proposed earlier

to explain the electronic structure of transition-metal (TM) impurities in semiconductors

[18]. The dominant interaction seems to be between the transition-metal impurity and its

nearest neighbors. Atoms farther away from the TM impurity interact to a much lesser

extent.

The next question we ask was how is the ferromagnetic stability modified. Should

the presence of the As impurity affect the ferromagnetic stability? As the As levels are
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for Mn d, (b) N p, which is the nearest neighbor of the Mn, and (c) for the As p calculated

for (Ga,Mn)N codoped with As. The zero of energy corresponds to the Fermi energy.
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Table 5.1: Effect on the stability by As codoping in (Ga,Mn)N host. The distance of the

As atom from either Mn atoms in both the ferromagnetic (FM) and antiferromagnetic

(AFM) relaxed configuration is also given.

Distance (Å) Ferromagnetic stability (meV) Tc (K)

FM AFM (EFM − EAFM)

- - -83.8 324.2

3.72 3.71 -20.6 79.6

5.89 5.86 -50.0 193.4

6.71 6.69 -50.0 193.4

8.11 8.10 -34.8 134.6

between the Mn d and the N p levels one would expect a modification in the ferromagnetic

stability, possibly a value between the two end limits of Mn in GaN and GaAs. In this

dilute alloy limit the valence band maximum is intermediate between that for GaAs and

GaN. The ferromagnetic stability as well as the corresponding mean field estimate of Tc

are given in Table 5.1 for various distances of the As impurity from either Mn atom. In

the absence of As impurity, the ferromagnetic stability is ∼ 84 meV and at the other limit

of Mn in GaAs it is ∼ 164 meV. This drastically drops to ∼ 21 meV in the presence of

an As impurity at 3.76 Å. As the As impurity is moved farther away the ferromagnetic

stability is partly regained though it still remains less than the value in the absence of

As impurity. This is contrary to our expectations and indicates that one must consider

other factors such as alloy scattering in addition to the modified energy denominator for

the interaction.

Examining the opposite limit of GaAs into which the N is doped we find a similar trend

in the ferromagnetic stabilization energy. In GaAs, Mn doping gives rise to a ferromagnetic

stabilization energy of 164 meV (Table 5.2). This drastically drops to 100 meV (Table

5.2) for a N impurity introduced at 4.73 Å. Ferromagnetic stability corresponding to the

unalloyed limit is partially regained for the N atoms farther away from Mn as shown in

Table 5.2.

Recent experimental work [14] on dilute magnetic semiconductors have focussed on
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Table 5.2: Effect on the stability by N codoping in (Ga,Mn)As host. The distance of

the N atom from either Mn atoms in both the ferromagnetic (FM) and antiferromagnetic

(AFM) relaxed configuration is also given.

Distance (Å) Ferromagnetic stability (meV) Tc (K)

FM AFM (EFM − EAFM)

- - -163.8 633.6

4.73 4.75 -100.1 387.2

7.41 7.42 -154.3 596.9

8.44 8.44 -161.7 625.5

10.18 10.19 -147.5 570.6

transition metal impurities in dilute alloys with an aim of understanding the mechanism

of the ferromagnetism better. If the hole introduced by Mn doping is a valence band hole

the belief is that it should be weakly perturbed by alloying effects at the dilute limit.

However a hole which resides in an impurity band is expected to be strongly affected

by alloying effects. We artificially tune the hole introduced by the Mn doping with a

introduction of U on the Mn d states in (Ga,Mn)As0.99N0.01. With a U of 4 eV on the

Mn d states, the hole moves towards a valence band hole. Hence alloy scattering effects

are expected to be weaker. Indeed our calculated ferromagnetic stability results effect

this. In the absence of any N impurity we see that the FM stability decreases when we

apply a U on the Mn-d states, which is expected. Analyzing the Mn-d up character near

the Fermi energy (+/- 0.5 eV) (Fig. 5.2) we see that for the U=0 case we see ∼ 11

% contribution of the total Mn-d up character while in the presence of U on the Mn-d

states we see a very less contribution of Mn-d up states near to the Fermi energy (here

its ∼ 2% of the total Mn-d up character). So with a U on the Mn d states, the Mn

character at the Fermi level decreases. Thus the impurity band introduced by the Mn

doping becomes more delocalized and hence faces reduced alloy scattering effects on the

Tc (Table 5.3). The ferromagnetic (FM) stability results reflect this. The FM stability

changes by about 64 meV in the absence of U to 15 meV in the presence of U . Stone et

al. [14] have examined P doping in GaMnAs. An insulator to metal transition is observed

as a function of doping. Usually high effective mass have to be assumed for the carriers
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Table 5.3: Effect on the stability by N codoping in (Ga,Mn)As host. The distance of

the N atom from either Mn atoms in both the ferromagnetic (FM) and antiferromagnetic

(AFM) relaxed configuration is also given.

U (eV) on Mn-d states Distance (Å) Ferromagnetic stability (meV) Tc (K)

FM AFM (EFM −EAFM)

0 - - -163.8 633.6

4 - - -128.1 495.5

0 4.73 4.75 -100.1 387.2

4 4.75 4.76 -113.6 439.4

to explain the experimental observations. This reinforces the idea of the carriers residing

in an impurity band.

While Mn in GaN has usually been accepted as a system in which the hole introduced

by Mn doping resides in an impurity band, the case of Mn in GaAs is heavily debated

with supporters on both sides. In order to quantify our observations further we examined

Mn doping in dilute alloys formed by P introduction in GaAs. If our earlier results of the

N doping in GaAs established the validity of the impurity band model, then we should

see strong effects on the ferromagnetic stability here also. The results as a function

of the impurity distance are given in Table 5.4. The perturbation seems to be very

weak and consequently the variations in the ferromagnetic stabilization energy from the

unperturbed case are small. Hence modifications of ferromagnetic stability in alloyed

systems is not proof enough for the impurity band picture. The deviation between our

results and experimental results of GaMnAs1−yPy could be due to various reasons. One

cause could be that the alloying concentration are large. Indeed when we introduced two

P impurities, such that each P atom is the nearest neighbor to one of the Mn atom and

also these P atoms connects the Mn atoms via a Ga atom, we found a reduction in the

ferromagentic stability from 164 meV in the unalloyed limit to 110 meV. Thus impurity

scattering is responsible for the reduction in ferromagnetic stability.

Closer analysis revealed that there are two parts which need to be considered when

an impurity atom is introduced. The first part is that associated with the modified
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Table 5.4: Effect on the stability by P codoping in (Ga,Mn)As host. The distance of

the P atom from either Mn atoms in both the ferromagnetic (FM) and antiferromagnetic

(AFM) relaxed configuration is also given.

Distance (Å) Ferromagnetic stability (meV) Tc (K)

FM AFM (EFM − EAFM)

- - -163.8 633.6

4.73 4.75 -154.3 596.9

7.42 7.44 -162.1 627.0

8.45 8.45 -169.1 654.1

10.21 10.21 -172.7 668.0

Table 5.5: Effects of relaxation on the stability in the case of (Ga,Mn)As host codoped

with N.

Energy (eV) Ferromagnetic stability (meV) Tc (K)

EFM EAFM (EFM − EAFM)

Un-Relaxed -907.192 -906.989 -203.2 786.0

Relaxed -909.264 909.164 -100.1 387.2

electronic interaction strengths associated with the impurity and the second associated

with the strain in the host lattice. Indeed we cannot decouple the two effects completely

but the effects of these perturbations may be discussed within calculations performed

under some constraints.

In Table 5.5 we consider the case of N codoped into GaAs at a distance of 4.73 Å.

The ferromagnetic stability is evaluated in the unrelaxed case where the calculation is

performed assuming that N merely replaces an As atom.

This calculation would capture the effects of modified interaction strengths as a result

of N doping. Ferromagnetic stability of the Mn pairs is increased from 164 meV in the

absence of N impurity to 203 meV. Examining the density of states corresponding to the

unrelaxed limit, we find that N p states are energetically closer to the Mn d states and

hence the increased interaction between the two could explain the increased ferromagnetic
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Figure 5.3: (a) The spin up projected density of states for Mn d, (b) As p, which is

the nearest neighbor of the Mn, and (c) for the N p calculated for (Ga,Mn)As codoped

with N. Inset of (c) shows a magnified view of the N p density of states near the Fermi

energy region. The solid lines corresponds to the unrelaxed case while the dashed lines

corresponds to the relaxed case. The zero of energy corresponds to the Fermi energy.

stability.

This is reflected in the inset of Fig. 5.3(c) which shows the N p character near Fermi

energy. Ga-N bonds are much smaller than the Ga-As bonds. Allowing the atoms to

optimize their internal positions by total energy minimization We find that the Ga-N

bonds are ∼ 2.08 Å long while the Ga-As bonds close to the N atom are 2.53 Å long. Those

far away from the N impurity are 2.48 Å long. Examining the ferromagnetic stability in

such a configuration, we find that it is drastically reduced to 100 meV. Examining the

density of states (Fig. 5.3) we find that there is hardly any change in the As p density

of states plotted for the nearest neighbor As atom as well as the Mn d partial density of
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Figure 5.4: (a) The spin up projected density of states for Mn d, (b) As p, which is the

nearest neighbor of the Mn, and (c) for the P p calculated for (Ga,Mn)As codoped with

P. The solid lines corresponds to the unrelaxed case while the dashed lines corresponds

to the relaxed case. The zero of energy corresponds to the Fermi energy.

states with and without relaxation. N p density of states show significant changes with

relaxation with the N p states moving from -1 eV to -3.5 eV below the Fermi level. In the

inset of Fig. 5.3(c) we magnify the near Fermi energy region of the N p density of states

and see that there is significant N p character at the Fermi energy in the unrelaxed case

which is reduced upon relaxation. Since movement of N p levels should imply reduced

interaction with Mn, the main effect of ferromagnetic stability reduction has to be the

lattice strain.

Considering the case of P in GaAs doped with Mn (Fig. 5.4), we find that the effects of

relaxation are very weak as a result of which ferromagnetic stability is hardly affected (Ta-

ble 5.4). Thus we are able to elucidate the microscopic origin of the reduction of Tc when
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we alloy III-V semiconductors with another group V anion. Although our calculations

provide us with qualitative trends, an exact numerical expression for the Tc as a function

of concentration in the dilute limit is difficult. This is because the ferromagnetic stability

is a strong function of the disorder position as well as of concentration. Strong disorder

potentials caused by clustering of the alloying atoms results in a stronger decrease in Tc

than when one has a random distribution.

5.4 Conclusion

We have examined Mn doping in the dilute alloy limit where strong valence band bowing

is observed, as a possible route to enhance the ferromagnetic transition temperature. This

has been quantified in our calculation as the ferromagnetic stabilization energy for a pair

of Mn atoms occupying lattice sites for which ferromagnetic stability has been observed

to be strong. Contrary to expectations of enhanced ferromagnetic stability on alloying

we find a reduction in the case of Ga1−xMnxAs1−yNy and Ga1−xMnxAs1−yPy where y

∼ 0.01. Mn doping in Ga1−xMnxAs1−yPy shows very small changes in the ferromagnetic

stability for 1% anion doping but for larger percentage of doping shows a reduction in Tc.

The origin of reduced ferromagnetic stability is traced to the strong strain effects that

accompany the introduction of the anion impurity. This strongly scatters the electron

comprising the valence band maximum and therefore modifies the ferromagnetic stability.
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Chapter 6

Semiconductor nanocrystals

In this chapter we study the variation of the lattice constant and bulk modulus of semi-

conductor nanocrystals as a function of size. We also examined the strain profile of the

bond-lengths in these nanocrystals in their optimized geometries as a function of size and

studied the role of different geometries in modifying their equilibrium lattice constant.

Group IV elements, silicon (Si) and germanium (Ge), (which occur in the diamond

structure), as well as a group III-V compound, gallium-arsenide (GaAs), and a II-VI

compound, cadmium-selenide (CdSe), are considered in this study. The latter two occur

in the zinc-blende structure. For certain studies CdSe nanocrystals were also considered

in the wurtzite structure [1].

6.1 Methodology

The electronic structure of the crystals were calculated within a plane wave pseudopo-

tential approach using the implementation in VASP. The calculations were performed at

Gamma point alone. Unless it is specified specifically, the LDA approximation for the

exchange has been used. A cutoff energy of 250.0 eV was used for the plane wave basis

for Si, Ge and GaAs calculations while a value of 274.3 eV was used for CdSe.

In our studies, nanocrystal were constructed by considering a central atom and adding

the next shell of atoms preserving the tetrahedral coordination that exists in the bulk

[2]. The crystals were truncated by either of two schemes. The first (layered) in which
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Table 6.1: Atom ’A’ centered binary nanocrystals (AB) considered with an underlying

zinc-blende or wurtzite geometry. NA and NB are the number of ’A’ and B type of atoms

in each nanocrystals generated by layered and spherical prescriptions.

Nanocrystal Nanocrystal size (n) NA NB

Zinc-blende 5 55 92

(Layered) 4 55 28

3 13 28

2 13 4

1 1 4

Zinc-blende 6 79 68

(Spherical) 5 43 44

4 19 16

3 13 16

Wurtzite 6 69 74

(Spherical) 5 51 41

4 19 20

3 13 14

each subsequent layer is added preserving the tetrahedral bonding of the inner layer. This

leads to the scenario where one has atoms of only one type at the surface. In the case

of the binary nanocrystal this leads to highly non-stoichiometric nanocrystals. The other

method (spherical) of termination involves choosing a central atom and considering only

those atoms which lie within a pre-defined cutoff radius [3]. It is believed to be valid for

large nanocrystal sizes as various experiments have found bulk-like coordination [4]. The

number of A-type (NA) and B-type (NB) of atoms for a ’A’ centered ’AB’ layered and

spherical nanocrystals considered by us are given in Table 6.1.

All atoms at the surface would have broken coordination, while the interior would have

bulk-like coordination. These nanocrystals will be termed as unpassivated nanocrystals.

Consequently, bonds would be shorter at the surface and longer inside. To limit these

perturbations, and to be in agreement with experiment (where the samples are usually

passivated) the surface atoms of the nanocrystal are then passivated with hydrogen in

the case of Si and Ge and with pseudo-hydrogen [5] in the case of binary nanocrystals.
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These nanocrystals are termed as passivated nanocrystals. All atoms of the nanocrystal

were then relaxed, with the symmetry restricted to Td point group symmetry, to attain

the minimum energy configuration. As we use an implementation of density functional

theory which works for periodic cells, a periodic array of nanocrystals with separations

consisting of 8 to 10 Å (refer section 6.4.2) of vacuum was considered by us. Finally,

in the case of GaAs nanocrystals, the semi core 3d states on the Ga atom were treated

as a part of the core (refer section 3.1). A passivated layered and spherical nanocrystal

centered on one atom and having 3 layers of atoms about the central atom is show in Fig.

6.1 and Fig. 6.2 respectively, and this is given the name n=3 layered and n=3 spherical

passivated nanocrystals.

Figure 6.1: A ball and stick model for layered ’A’ centered passivated ’AB’ nanocrystals

(n=3) having an underlying zinc-blende geometry. The large balls correspond to ’A’

atoms, the medium sized balls correspond to ’B’ atoms and the outer smaller balls denote

the pseudo-hydrogen atoms.

Unless it is specified specifically all atoms of the nanocrystal were then relaxed to
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Figure 6.2: A ball and stick model for spherical ’A’ centered passivated ’AB’ nanocrystals

(n=3) having an underlying zinc-blende geometry. The large balls correspond to ’A’

atoms, the medium sized balls correspond to ’B’ atoms and the outer smaller balls denote

the pseudo-hydrogen atoms.

attain the minimum energy configuration. We also test the energy convergence of the

nanocrystals for different starting configuration of the nanocrystals. Here for the studies

we considered passivated n=4 and n=5 spherical Ga centered GaAs nanocrystals where

they were formed by the bulk like fragment having different lattice constants (Table 6.2).

We find that all the different starting configuration of the nanocrystal leads to the same

minimum energy configuration as well as same averaged equilibrium lattice constant. The

details of how the averaged equilibrium lattice constant of the nanocrystals are calculated

will become more clear in the section 6.2. The error bar in our calculated average lattice

constant is about 0.005 Å.

From the final relaxed optimized structure the nanocrystal was expanded and con-

tracted keeping the geometry fixed and at each size the convex hull formed by the surface
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Table 6.2: Variation of the optimized energy and average equilibrium lattice constant

variation for different starting configuration of passivated spherical Ga centered GaAs

nanocrystal.

Starting lattice Final optimized configuration

constant Energy Averaged equilibrium

(Å) (eV) lattice constant (Å)

n=4

5.65 -253.6672 5.692

5.75 -253.6670 5.693

5.80 -253.6675 5.692

n=5

5.65 -588.7179 5.711

5.74 -588.7173 5.713

5.80 -588.7174 5.714

atoms was constructed and it was used to compute the volume. During the expansion

and the contraction of the final optimized structure of a particular sized nanocrystal the

supercell was fixed at the same size so that we have the same number of plane wave in all

the calculations. The bulk modulus were then calculated by fitting the energy variation

with volume to the Murnaghan equation of state [6].

6.2 Size dependence of lattice constants of semiconductor nanocrys-

tals

6.2.1 Introduction

The properties of semiconductor nanocrystals have received a lot of attention in the past

two decades as a result of strong size dependence of various physical properties. The un-

derlying crystal structure plays an important role in determining the electronic structure

1This section is based on the following paper:

R. Cherian and P. Mahadevan, Size dependence of lattice constants of semiconductor nanocrystals Appl.

Phys. Lett. 92, 043130 (2008).
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and the ensuing physical properties. However the basic issue of structure determination is

difficult in the context of materials at the nanoscale. Even the most powerful techniques

that one is familiar with for the characterization of bulk crystals are found to fail in the

case of nanocrystals [7]. The difficulties arise because in the present case one does not

have a homogeneous distribution of particles. Not only do the sizes vary over several

percent depending on the synthesis procedure, one also finds different shaped particles as

a result of the growth techniques. Further most of the commonly used techniques provide

an averaged lattice constant / bond-length. Hence several of the basic questions in the

context of nanoparticles remain unanswered. It is here that theoretical calculations play

an important role. They can simulate the ideal situation and hence can be used to pro-

vide insight into the modifications in the lattice constant that take place as a function of

nanoparticle size.

Nanocrystals consist of a size-able number of atoms on the surface. In an ideal situation,

all atoms at the surface would have broken coordination, while the rest would have bulk-

like coordination. To make up for the lost coordination, stress develops at the surface and

decays into the bulk. Naively as a result of this one would have longer / bulk-like bonds

in the interior and shorter bonds at the surface. The naive picture would be modified as

the surface atoms are usually passivated by ligands and so the strain effects are not as

strong as one would expect in the unpassivated case.

The experimental literature has conflicting reports of bulk-like nearest-neighbor bond-

lengths [8], small-intermediate strains resulting in modified lattice constants for the nanocrys-

tals [9] as compared with the bulk. However, the issue of the development and variation

of strain is difficult to obtain experimentally. In this context theoretical models will be

able to address the issue, as well as ascertain the role of the passivants.

6.2.2 Results and Discussion

Initially the equilibrium bond-length is determined by minimizing the energy with respect

to the lattice constant allowing for a uniform expansion or contraction of the volume. The

equilibrium lattice constant was determined by fitting the energy as a function of volume

to the Murnaghan equation of state [6]. Then the nanocrystals were passivated and all
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atoms of the nanocrystals were relaxed to attain the minimum energy configuration. An

average bond-length was determined by averaging over all the nearest-neighbor bond-

lengths. This was then used to determine an average equilibrium lattice constant. While

generating the nanocrystals we can start with either an anion or a cation at the center. In

the present case we have considered both schemes of generation of the binary nanocrystals.

As the conclusions arrived at were similar in both cases here we present the results for

only one case in detail.

We find it useful to use the definition of Masadeh et al. [9] to define the surface strain.

The surface strain generated in the nanocrystals is defined as

Bondstrain(%) =
(r0 − r)

r0
(6.1)

where ’r0’, is the nearest neighbor bond-length between the atoms, is calculated using

the theoretical equilibrium lattice constant for the bulk. ’r’ is the nearest neighbor bond-

length that one obtains after the optimization of the structure described earlier. It should

be noted that ”r” varies from shell to shell of the nanocrystal, and could be different

even for atoms of the same type in a given shell. This arises because of the differences

in surface coordination that one can have because of the truncation scheme considered.

Inspite of these variations, the qualitative aspects are similar.

We consider the case of an elemental semiconductor, Si. The calculated equilibrium

lattice constants are shown in Table 6.3 as a function of nanocrystal size. One finds that

the equilibrium lattice constant is 5.407 Å for the bulk. The lattice constant computed

for the nanocrystals is smaller than the bulk in all the cases, as expected from the naive

considerations presented earlier. A strong size dependence of the lattice constant is found

in the unpassivated case which shows deviations ranging from 2.27 % to 1.02 % when we

go from smaller nanocrystals with 3 layers around the central layer to larger nanocrystals

with 6 layers around the central layer. However the size dependence of the lattice constant

is much smaller for the passivated nanocrystals, with deviations ∼ 0.3% - 0.4% and ap-

proaches bulk-like values for very small nanocrystal sizes. Similar conclusions are arrived

at for nanocrystals of CdSe and GaAs (refer section 6.3.2 for the passivated and Table 7.2

for the unpassivated cases). For the binary nanocrystals GGA PW91 [10] approximation

for the exchange has been used.
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Table 6.3: Comparison of the equilibrium lattice constant and average bond strain for the

unpassivated Si nanocrystals with the average equilibrium lattice constant and average

bond strain for the passivated Si nanocrystals as a function of nanocrystal size.

Nanocrystal size (n) Diameter (Å) lattice constant (Å) average bond strain (%)

unpassivated passivated unpassivated passivated

∞ ∞ 5.407 - 0.0 -

6 17.10 5.352 5.392 1.02 0.28

5 14.05 5.345 5.384 1.15 0.43

4 10.81 5.323 5.379 1.55 0.52

3 8.97 5.284 5.384 2.27 0.43

Inspite of the fact that the bulk lattice constant is reached quickly in the passivated

case, we do find deviation in the bond-lengths as a function of depth from the surface,

being maximum at the surface. Quantifying this in terms of the bond strain (Fig. 6.3(a)),

we find that in the core of the nanocrystal, for the size considered we find ∼ 0 % bond

strain. Beyond the second layer, the strain exhibits a linear variation. Since we have a

single parameter that changes i.e. depth, we would expect a linear variation with depth.

This is however not the case, and we find that the strain is invariant between the third

and the sixth layers. However between the first and third layers one has a linear variation

with depth, with the core showing almost bulk-like lattice constants. The unusual strain

profile that we find here is probably a result of a competition between the microscopic

considerations determining the strain profile in the interior being different from those

determining it at the surface. Hence the bond strain profile depends on the strength of

the surface passivant. Consequently, the strain profile is different in the case of GaAs

(Fig. 6.3(b)) and CdSe (Fig. 6.3(c)).

In the case of CdSe we considered both the zinc-blende as well as the wurtzite poly-

morphs. As in the zinc-blende case, the average lattice constant is almost bulk-like for

nanocrystals larger than 15 Å diameter. The equatorial and the axial bonds (Fig. 6.3(d))

show almost similar depth dependences. The averaged bond-length for each layer fol-

lows a depth profile very close to one’s naive expectations being constant upto the third
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Figure 6.3: Calculated bond strain variation between indicated layers (x-axis) for n=6 (a)

Si, (b) Ga-centered GaAs, (c) Cd-centered zinc-blende CdSe and (d) Cd-centered wurtzite

CdSe nanocrystals. The corresponding nearest neighbor bond-length between the atoms

at the theoretically obtained equilibrium bulk lattice constant for each case is given by

r0. In the case of wurtzite nanocrystals the axial (dashed line), equatorial (dotted line)

as well as the average bond strain (black solid line) for each layer have been shown as a

function of depth. The values of the bond-length for some layers have been indicated. A

positive strain corresponds to compression of bonds by definition.
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monolayer and then showing a linear variation with depth.

6.2.3 Conclusion

We have examined the deviation from bulk-like lattice constants considering nanocrystals

of Si, GaAs and CdSe. Unpassivated nanocrystals shows larger deviation in the average

bond-length values from the bulk-like bond-length values. Naive arguments based on

broken coordination at the surface lead us to expect shorter bonds at the surface of the

nanocrystal. Indeed this is found to be the case, though the surface stress generated is

found to be typically ∼ 1% or less when we consider nanocrystals passivated by hydrogen

or pseudo-hydrogens, with almost bulk-like bond-lengths obtained 5-6 layers below the

surface. Averaging over all the bond-lengths of the passivated nanocrystal we find that

bulk-like bond-lengths are obtained for small nanocrystal sizes having diameter ∼ 20 Å.

6.3 Effects of non-stoichiometry on the lattice constant of semi-

conductor nanocrystals: CdSe and GaAs

6.3.1 Introduction

Determining the structure of nanocrystals is extremely important in order to be able to

quantitatively describe the properties of these materials, and derive structure-property re-

lationships. An accurate determination of the structure, however, is limited [7] firstly by

the fact that the samples have an inhomogeneous size distribution and secondly because

they involve a multi-parameter fitting which depends on the suitability of the starting set.

Additional problems in experiments arise from the presence of defects, nature of surface

termination etc. In view of these experimental constraints, theory can play an important

role in structure prediction as the ideal defect-free situation can be simulated in the cal-

culations. In this work we have considered nanocrystals of both binary semiconductors

2This section is based on the following paper:

R. Cherian and P. Mahadevan, Effects of non-stoichiometry on the lattice constant of semiconductor

nanocrystals: CdSe and GaAs J. Nanoscience and Nanotechnology, 9, 5564 (2009).
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CdSe and GaAs and examined the role of surface termination in determining the equi-

librium lattice constant. The results for elemental semiconductor Si have been provided

for comparison. Our results suggest that different ways of constructing the nanocrystal

could lead to different equilibrium lattice constants for similar sized nanocrystals.

6.3.2 Results and Discussion

The variation of the average equilibrium lattice constants for passivated layered as well

as spherical nanocrystals of Si, GaAs and CdSe as a function of nanocrystal size are

plotted in Fig. 6.4. The average equilibrium lattice constants for these nanocrystals were

calculated as described in section 6.2. The calculated bulk lattice constant (denoted as

a0 in Fig. 6.4) is found to be 5.407, 5.759 and 6.202 Å in the case of Si, GaAs and CdSe

respectively. GGA PW91 [10] approximation for the exchange has been used for binary

nanocrystals. Experimentally the bulk lattice constant for these materials are found to

be 5.431, 5.658 and 6.051 Å [11].

In all the cases considered we see almost similar trends in the variation of the lattice

constant of the layered and spherical nanocrystal as a function of size (Fig. 6.4). The

passivated layered nanocrystals approaches the bulk equilibrium lattice constant much

faster compared to the passivated spherical nanocrystal. In the case of Si nanocrystals

there is just one type of atoms but with the the layered nanocrystals having more number

of less coordinated atoms on the surface compared to the spherical nanocrytals. Here we

see that the deviations in the average equilibrium lattice constant for similar sized layered

and spherical Si nanocrytals are less (Fig. 6.4 (a)).

In the case of binary nanocrystals along with this effect of atoms having different

coordination we also have different types of atoms that make up the surface. The layered

binary nanocrystals always has one type of atoms on the surface making the surface highly

non-stoichiometric, while the spherical nanocrystals has almost a stoichiometric surface.

In the case of binary nanocrytals we see that the deviation in the lattice constant for

similar sized layered and spherical nanocrytals are more ((Fig. 6.4 (b) and (c)) compared

to the Si case (Fig. 6.4 (a)). Considering the case of spherical nanocrystals, the largest size

GaAs nanocrystals studied by us shows a deviation of 0.47 % while the largest sized CdSe
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Table 6.4: Variation of the average axial and equatorial bond-lengths for the passivated

spherical CdSe nanocrystals, having an underlying wurtzite geometry, as a function of

nanocrystal size. These nanocrystals have a Cd atom at the center.

Nanocrystal size (n) Diameter (Å) Volume (Å3 bond-length (Å)

∞ ∞ ∞ Axial 2.689

Equatorial 2.686

6 21.17 4389.72 Axial 2.681

Equatorial 2.674

5 19.86 2899.29 Axial 2.673

Equatorial 2.671

4 13.08 1095.05 Axial 2.684

Equatorial 2.660

3 11.28 740.05 Axial 2.656

Equatorial 2.666

nanocrystals studied by us shows a deviation of 0.40 %. We would like to comment here

that the deviations were much smaller in the case of the elemental spherical nanocrystals

of Si as shown in the section 6.2.2. While for the largest considered layered nanocrystals

the corresponding deviations were 0.20% for Si, 0.07% for GaAs and 0.19% for CdSe.

Thus similar sized binary nanocrystals which have different shapes are found to have

different equilibrium lattice constants.

A similar analysis carried out for spherical passivated wurtzite nanocrystals of CdSe

is given in Table 6.4 Here the radius of the nanocrystal is defined as the distance of the

central atom to the outermost atom. The infinite diameter/volume nanocrystal (n=∞)

represents the bulk limit. Bulk-like lattice constants are reached much faster than the

zinc-blende counterparts.

6.3.3 Conclusion

The effect of surface stoichiometry on the average equilibrium lattice constant of nanocrys-

tals has been studied. Similar sized passivated binary nanocrystals reach bulk-like equi-
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Figure 6.4: Variation of the average equilibrium lattice constant for the passivated layered

(solid line and open circles) spherical (dashed line and open squares) nanocrystals of (a)

Si, (b) GaAs and (c) CdSe, having an underlying zinc-blende geometry, as a function of

nanocrystal size. In the case of GaAs and CdSe nanocrystals, Ga and Se lie at the centers

respectively. The theoretically obtained equilibrium bulk lattice constant for each case is

given by a0
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librium lattice constants much faster when grown layer by layer than when spherical

fragments are considered. This implies that different growth conditions could result in

similar sized nanoparticles with different average equilibrium lattice constants.

6.4 Size dependence of the bulk modulus of semiconductor

nanocrystals

6.4.1 Introduction

This work focuses on the size dependence of the bulk modulus, which is a measure of

the compressibility, of semiconductor nanocrystals. The problem is difficult to address

experimentally, as usually synthesized particles exhibit a distribution of sizes. Some

studies reveal an enhancement of the bulk modulus for nanocrystals with respect to the

bulk values. In the case of AlN nanocrystals having an average particle size of 10 nm

an enhancement of about 340 GPa is observed compared to the bulk modulus of 208

GPa for the bulk [12], thus showing an enhancement of 63.4 %. While γ-Fe2O3 [13] and

CeO2 [14] nanocrystals showed 50.2 % and 52.2 % bulk modulus enhancement respectively

from their bulk values. As all these papers give results for only one specific size of the

nanocrystals, the evolution of mechanical properties as a function of size could not be

completely investigated. In this context, theoretical calculations which enable to simulate

the ideal situation would provide valuable insight into the size dependence. The advantage

of these simulations are that they allow to take the ideal systems and and study the

size dependence effect on the bulk modulus. The ab-initio calculations reported here

consider nanocrystals in the size range 0.5 to 5 nm3, and evaluate the bulk modulus. The

motivation of our work lies in proposing a phenomenological rule characterizing the size

dependence of bulk-modulus, as a result we can predict the behavior of bigger sizes which

is difficult to calculate due to the numerical cost.
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6.4.2 Convergence Checks

As part of the convergence test we considered two sizes of n=3 spherical nanocrystals in

all the cases and computed the change in energies of the nanocrystals for two different

sizes of the cubic supercell considered. Increasing the size of the supercell leads to the

increase of the vacuum region separating the nanocrystals. The calculation here was done

with an energy cutoff of 312.5 eV in the case of Si, Ge and GaAs while with 342.8 eV as

the energy cutoff in the case of CdSe nanocrystals. Its clear from the Table 6.5 that the

energy difference is the same in these two sets of supercells considered, thus showing that

the chosen vacuum of 8 Å is enough to attain the bulk modulus values accurately. In our

present studies we define the amount of vacuum used as the difference of the supercell size

and the diameter of the nanocrystal considered. For example in the case of Si nanocrystal

considered here, the diameter of the nanocrystal is 12 Å, so in this case the amount of

vacuum used is 8 Å. In our studies we have considered vacuum of 10 Å in the case of

small size nanocrystals while a vacuum of 8 Å in the case of larger sized nanocrystals.

Since we intended to study the size dependence of the bulk modulus of various nanocrys-

tals first we went to see how much accurately we can find this dependence with minimum

computational cost. Doing the calculation for larger size nanocrystals with high energy

cutoff are computationally very expensive. For this we started off the analysis with the

Si nanocrystals.

Considering vacuum spacing as decided above we calculated the bulk modulus of the

spherical Si nanocrystals for nanocrystal sizes n=3 to n=6 for various energy cutoffs.

We show the plot (Fig. 6.5) for the Murnaghan equation of state to determine the bulk

modulus for the n=3 spherical passivated nanocrystal of Si taking different cutoff energies

with the supercell size fixed at the 20 Å. We can see that the equilibrium volume (marked

in Fig. 6.5) in these two cases matches quite well. The difference in the equilibrium volume

is about 0.16 Å3. But we see that there is difference in the equilibrium energy values (0.5

eV), which is due to the difference in the energy cutoff used. We see that the bulk modulus

does not vary much with different energy cutoff considered (Table 6.6). So the trend of

the variation of the bulk modulus as a function of size over a large range can be captured

well within smaller energy cutoff. Similar studies on convergence were done on the Ge and
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Table 6.5: Difference in energies (∆E in eV) for two sizes of n=3 nanocrystals at two

different sizes of supercell considered.

Supercell size Å Volume of nanocrystal (Å3) Energy (eV)

Si

20 523.788 -290.1626

517.859 -290.1509

∆E 0.012

25 523.788 -290.1550

517.859 -290.1434

∆E 0.012

Ge

20 577.674 -262.9764

571.561 -262.9523

∆E 0.024

25 577.674 -262.9612

571.561 -262.9386

∆E 0.023

GaAs

23 578.530 -245.1926

572.408 -245.1774

∆E 0.015

28 578.530 -245.1830

572.408 -245.1676

∆E 0.015

CdSe

22 717.078 -182.0085

709.990 -181.9894

∆E 0.019

27 717.078 -182.0116

709.990 -181.9940

∆E 0.018
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on the binary nanocrystals of GaAs and CdSe and obtained similar conclusions (Table

6.7) as in the case of Si (Table 6.6).
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Figure 6.5: Murnaghan equation of state fit for the n=3 spherical nanocrystal of Si for

the energy cut off (a) 500 eV and (b) 312.5 eV.

6.4.3 Results and Discussion

The bulk modulus is defined by the equation,

B = V
∂2E

∂2V
= −V ∂P

∂V
(6.2)

where, E(V) is the total ground-state energy as a function of volume, P is the pressure,

and B is evaluated at the minimum of E(V). Thus, B is considered as the curvature of

E(V) at the equilibrium volume. This state is determined by a fit of the Murnaghan

equation of states [6].
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Table 6.6: Variation of the bulk modulus of spherical Si nanocrystals as a function of size

at different energy cutoff considered.

Nanocrystal size Bulk Modulus (GPa)

(n) with energy cutoff

250 eV 312.5 eV 500 eV

3 122.7 123.2 122.8

4 117.4 117.0 116.6

5 105.2 105.8 105.4

6 101.3 102.6 -

Table 6.7: Bulk modulus variation of spherical n=3 nanocrystals of Ge, GaAs and CdSe

at different energy cutoff considered.

Nanocrystal size Bulk Modulus (GPa)

with energy cutoff

250 eV 312.5 eV (for Ge and GaAs) 450 eV

342.8 eV (for CdSe)

n=3 Ge 105.1 106.9 108.1

n=3 GaAs - 100.1 100.3

n=3 CdSe - 65.3 65.2
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Here it should be noted that determination of bulk modulus strongly depends on the

volume computation. From the Eqn. 6.2 it is clear that an error of 25% in the determi-

nation of the volume can lead to an error of 33% in the bulk modulus determination. In

the case of nanocrytals there is no unique definition for the determination of the volume

and here we see that the volume determination is really crucial for the correct description

of the bulk modulus estimation of these nanocrystals. In our studies, as said earlier, we

determine the volume of the nanocrystals by determining the volume of the convex hull

formed by the surface atoms.

Table 6.8 below gives the size dependence of the bulk modulus of the nanocrystals

considered using LDA as the exchange. The desired vacuum in these calculations are set

as described in section 6.4.2 and the calculation here was done with an energy cutoff of

312.5 eV in the case of Si, Ge and GaAs while with 342.8 eV as the energy cutoff in the

case of CdSe nanocrystals. For bulk Si, Ge, GaAs and CdSe our calculated bulk modulus

values are 97.0, 72.3, 75.1 and 57.5 GPa while experimentally [11] these are found to

be 98, 77.2, 75 and 53 GPa respectively. Here we do find an enhancement of the bulk

modulus in the nanosize regime in every case (Table 6.8). Cohen had [11] calculated

the bulk moduli of diamond and zinc-blende solids and arrived at a scaling law in which

the bulk modulus of these materials depends on the nearest neighbor separation. Thus

the observed enhancement of bulk modulus in the nanosize regime can be attributed

to the changes in the bond-length. In the case of the nanocrystals there is no uniform

bond-lengths, while it exhibits a bond strain profile as explained in section 6.2. Using

the averaged bond-lengths values and using Cohen’s scaling relation we see very small

enhancement in the bulk modulus in the nanoregime, this is because the averaged bond-

lengths for the passivated nanocrystals attains its bulk like value for very small sizes itself

(section 6.2). Hence Cohen’s scaling law cannot be used in the nanoregime.

A fit of all the available data allows us to extract a dependence describable by the

phenomenological rule

B0 = B∞exp(
k

V
) (6.3)

where, B0 is the bulk modulus, B∞ is the corresponding value for the bulk, k a material
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Table 6.8: Bulk modulus calculated for different size of semiconductor nanocrystals (using

LDA as the exchange). The size of nanocrystals is both indicated in term of layer number

(n) and volume.

Nanocrystal size (n) Volume (Å3) Bulk modulus (GPa)

Si

∞ ∞ 97.0

3 522.14 123.2

4 651.32 117.0

5 1751.52 105.8

6 2995.34 102.6

Ge

∞ ∞ 72.3

3 577.81 106.9

4 724.36 99.2

5 1959.26 87.8

6 3349.30 83.9

GaAs

∞ ∞ 75.1

3 577.72 100.1

4 727.48 96.3

5 1960.41 86.1

6 3372.74 82.9

CdSe

∞ ∞ 57.5

3 718.21 65.3

4 922.54 63.6

5 2449.63 57.1

6 4234.44 55.0
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parameter consistent to a volumic density, and V the volume. The Fig. 6.6 presents the

plot of the function here obtained and the corresponding ab-initio computations. The

parameter ’k’ also has a physical significance, it gives an estimate of the volume of a

particular nanocrystal below which the enhancement of bulk modulus is greater than 170

%.
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Figure 6.6: Bulk modulus as function of nanocrystal sizes for Si, Ge, GaAs, and CdSe

using LDA as the exchange. In dot, the results of ab-initio computations. In line, the

phenomenological rule determined by fitting all the computation results.

We have not included the bulk modulus of the extended solid in our fitting, but we

compare it to the asymptote of our fit function. Table 6.9 indicates the fit details. The

deviation between the asymptote of function proposed here and the bulk value is the

largest for Ge and its about 10 %. All curves allows an asymptote very close to the bulk

value. This gives us greater confidence in our volume computation of the nanocrystals

and thus a much better confidence in the the phenomenological relation that we have

derived here.
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Table 6.9: Results of the fit performed on different nanocrystals using LDA as the ex-

change.

Nanocrystal Bulk limit Bulk modulus k % deviation

bulk modulus (Bfitted
0 ) (GPa) (Å3) between Bfitted

0

obtained from fitting (Bactual
0 ) (GPa) and Bactual

0

Si 99.0 97.0 112.95 2.0

Ge 80.2 72.3 162.18 9.8

GaAs 80.2 75.1 129.94 6.3

CdSe 53.5 57.5 148.77 7.5

Table 6.10: Prediction of the size dependence for a 10 nm3 nanocrystal using the phe-

nomenological law.

Nanocrystal B0(GPa) Fitted B∞ (GPa) % deviation

Si 100.1 99.0 1.1

Ge 81.5 80.2 1.6

GaAs 81.2 80.2 1.2

CdSe 54.3 53.5 1.5

The nanocrystal size studied here is evidently a little small compared with those more

often experimentally observed. On the other hand, defining a phenomenological law

enables to predict the behavior of bigger sizes, more difficult to calculate due to the

numerical cost. Thus, Table 6.10 shows the size dependence expected for a 10 nm3

nanocrystal, size more often experimentally observed.

We also tried GGA exchange for the binary nanocrystals and verified that the trend

observed here is not a result of the exchange functional used. The results in these cases

are given in Table 6.11. Here too we were able to fit the bulk modulus variation (Fig. 6.7)

for the binary nanocrystals using the same phenomenological rule as described in Eqn.

6.3. The fitted details in this case is given in Table 6.12.
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Table 6.11: Bulk modulus calculated for different size of semiconductor nanocrystals

(using GGA as the exchange). The size of nanocrystals is both indicated in term of layer

number (n) and volume.

Nanocrystal size (n) Volume (Å3) Bulk modulus (GPa)

GaAs

∞ ∞ 62.5

3 613.067 89.6

4 772.317 84.6

5 2094.795 73.8

6 3601.500 69.9

CdSe

∞ ∞ 45.1

3 801.999 65.0

4 972.137 59.8

5 2703.379 48.3

6 4431.198 49.4

Table 6.12: Results of the fit performed on the binary nanocrystals using GGA as the

exchange.

Nanocrystal Bulk limit Bulk modulus % deviation

bulk modulus (Bfitted
0 ) (in GPa) between Bfitted

0

obtained from fitting (Bactual
0 ) (in GPa) and Bactual

0

GaAs 67.1 62.5 7.4

CdSe 44.8 45.1 0.4
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Figure 6.7: Bulk modulus as function of nanocrystal sizes for GaAs, and CdSe using GGA

as the exchange. In dot, the results of ab-initio computations. In line, the phenomeno-

logical rule determined by fitting all the computation results.

6.4.4 Conclusion

We have studied the size dependence of the bulk modulus nanocrystals of Si, Ge, CdSe

and GaAs. An enhancement is seen in the small size regime and this we attribute to the

bond strain that exist in these nanocrystals. A phenomenological law is derived which in

most cases has the correct magnitude in the asymptotic limit.
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Chapter 7

Growth of nanocrystals

7.1 Introduction

As the size of materials is decreased and one enters into the regime of dimensions in

nanometers, one finds significantly different properties than in the bulk. The strong de-

pendence of physical properties on size, found especially in semiconductors has significant

technological implications and this coupled with the ease of fabrication and processing

makes this class of materials promising building blocks for materials with designed func-

tions [1]. An access to a control of the properties requires an ability to control the uni-

formity of size, shape, composition, crystal structure and surface properties. In this work

we theoretically examine two limiting scenarios of nanoparticle growth and determine the

extent of control that can be achieved on the surface structure and the consequences.

Colloidal chemistry route to nanoparticle synthesis [2] has emerged as a popular route

to semiconductor nanoparticles with tremendous applications [3]. Colloidal nanocrystals

are made up of an inorganic core which is preserved because of a surface layer of organic

molecules. The typical size regime in which the properties show quantum effects are

similar to the size regime in which one finds large organic macromolecules. Tremendous

precision has been achieved in the latter case. It is therefore the hope that one can achieve

the same kind of control in these inorganic macromolecules. While this has still not been

achieved to the extent that one desires, in the past decade there have been significant

advances in narrowing the size distribution of the synthesized nanoparticles.

147
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A typical synthesis consists of 3 components - precursors, organic surfactants and

solvents. Initially the precursors decompose in solution or react at relatively high tem-

perature to form a supersaturation of monomers followed by a burst of nucleation centers

and growth of nanoparticles. While high growth rates lead to highly anisotropic shapes

with high energy forms, low growth rates result in nanocrystals that are round in shape

and correspond to the equilibrium structure where the guiding principles are those of

equilibrium thermodynamics [4].

A passivant which is usually an organic surfactant is used to prevent agglomeration

of nanocrystals. This moiety as its name suggests attaches itself to the surface of the

nanocrystal and saturates all dangling bonds so that optical transitions observed in these

materials are not between surface states [5, 6]. The choice of passivant turns out to be

especially difficult in the case of binary nanocrystals as it must attach itself to both the

cation as well as the anion atoms at the surface and saturate the generated dangling

bonds for both cases. We illustrate this considering the example of CdSe with TOP as

the passivant. TOP functions as a good passivant for Se atoms at the surface. However,

it reacts with the Se atoms that exist in the solution to form TOPSe. These bind to

the Cd atoms on the surface and quench the photoluminescence possibly by introducing

surface states [6]. Hence surface stoichiometry turns out to be crucial for the enhanced

optical efficiency in the nano-regime. If one could generate binary nanocrystals with only

one type of atoms at the surface, one can improve the quantum efficiency dramatically.

There have been efforts in controlling the surface stoichiometry during synthesis but there

is no clear strategy [7]. We started out by asking the question whether nanocrystals with

just one type of atoms at the surface can form theoretically. Considering two prototypical

examples of GaAs and CdSe respectively, we calculate the formation energies per binary

atom as a function of the allowed range of chemical potentials. Highly off-stoichiometric

nanocrystals with just one type of atom at the surface are strongly favored over stoichio-

metric ones at the same size. This tendency we find strongly depends on the strength

of the molecule used as the passivant. Considering the opposite limit of no passivant

molecule in our calculations, we find that stoichiometric nanocrystals are favored.
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7.2 Methodology

In order to examine the growth mechanism, we constructed nanocrystals of GaAs and

CdSe. The underlying tetrahedral coordination of the bulk lattice was preserved while

constructing the nanocrystals, though the scheme of truncation chosen was different. Here

we considered layered nanocrystals and spherical nanocrystals as discussed in section 6.1.

The layered nanocrystals are highly off-stoichiometric while the spherical ones are nearly

stoichiometric by construction. The surface of the nanocrystals were passivated with

pseudo-hydrogens [8] and the positions of the atoms were optimized to the minimum en-

ergy configuration. In order to calculate the total energy of the nanocrystals, periodic

nanocrystals separated by almost 10 Å of vacuum were considered. The electronic struc-

ture was solved within a plane-wave pseudopotential method using VASP. PAW potentials

[9] were used in which the Ga d states were treated as a part of the core. The GGA PW91

approximation [10] to the exchange has been used. The calculations were performed at

Gamma point alone. As the nanocrystals consist of different number of atoms, as well as

differing stoichiometry in the case of binary semiconductors, we use the formation energy

per binary atom defined according to

∆Hf =
1

(m+ n)
[E(AmBnH1pH2q) −mE(A)

−nE(B) − pE(H1) − qE(H2)

−mµA − nµB] (7.1)

to compare the relative stabilities. Here, E(AmBnH1pH2q) is the total energy of the

nanocrystal consisting of m atoms of element A, n atoms of element B and p/q atoms

of the two types of pseudo-hydrogen atoms while E(A) and E(B) are the energies of the

elements A and B in their most stable structure. E(H1) and E(H2) have been evaluated

considering a molecule formed by the pseudo-hydrogens respectively. We have considered

the orthorhombic structure for Ga [11], rhombohedral structure for As [12] and hexagonal

structure for both Cd [13] and Se [14] at their experimental lattice constants to evaluate

the energies of the bulk solids entering the expression for the formation energy. Geometry
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optimization of the internal positions was however carried out. The chemical potentials

µA and µB are determined by the criterion for stability of the bulk solids.

7.3 Results and Discussion

In Fig. 7.1 we have plotted the total density of states for layered Se centered n=4 CdSe

nanocrystals for the case where there is no passivating layer, and the surface has just been

terminated without allowing for surface reconstructions. The total density of states for

the passivated CdSe nanocrystals have been provided. The alignment of the energies of

the two different calculations has been made with respect to the d levels of the Cd atom

at the core of the the nanocrystal. The latter set of calculations enable us to define the

band edges. We find that as a result of the passivant, surface states generated in the

gap, as shown in panel (b) of Fig. 7.1, are moved into the valence band by approximately

0.5 eV. Hence there are two possible scenarios. The first in which the passivant serves

the role of merely of an electron donor/acceptor as the case may be depending on the

surface termination. In such a case the expectation is that there is strong reconstruction

of the surface which moves the surface states out of the band gap region. The second is

one where the passivant interacts with the atoms comprising the surface. Now moving

the surface states by 0.5 eV would imply very strong interactions between the passivant

molecule and the nanocrystal surface. Considering the case of pseudo-hydrogen atoms as

passivating atoms, we examine which of the two scenarios is realized and the consequences

of the same.

The passivant considered by us is ”near-ideal” in the sense that all states introduced

in the band gap in the absence of the passivant are moved out of the band gap. In Fig.7.2

we have plotted the charge density corresponding to the valence band maximum (VBM)

and conduction band minimum (CBM). The CBM has dominant weight (Fig.7.2) on the

central atom, while the VBM has the maximum weight on the first shell of the anions for

the cation-centered nanocrystals. This is what one would expect for proper confinement.

The pseudo-hydrogens in this case compared to the organic passivants used in the
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Figure 7.1: The total density of states for the Se-centered layered n=4 nanocrystal for

two cases. (a) In the absence of any passivating layer and without allowing any surface

reconstructions and (b) in the presence of a passivating layer and allowing for surface

reconstructions.
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Figure 7.2: The isosurface plots of the wavefunction squares of (a) VBM and (b) CBM

for the passivated CdSe spherical nanocrystal (with 5 layers around the central Cd atom).

The Cd and Se atoms are shown in dark and light colored balls respectively. The pseudo-

hydrogen atoms are not shown.

experiments. Here, we find, that they interact strongly with the surface atoms. For the

surface Se atom of a n=4 passivated nanocrystal we plot the Se-p projected partial density

of states. The corresponding partial density of states of the H atom to which it is attached

is also given. There is substantial admixture of H-s states with the Se-p states as a result

of their interaction (Fig. 7.1). Even in the case of Cd terminated nanocrystals (n=5

passivated nanocrystal) we see the same effect where the pseudo-hydrogen atoms shows a

strong interaction with the surface Cd atoms (Fig. 7.4). What then are the consequences

of this strong interactions ?

We have examined the formation energies per binary atom were computed for both

spherical as well as layered nanocrystals as a function of size. Here under both cation-rich

conditions as well as anion-rich conditions we find (Fig. 7.5) much to our surprise that the

non-stoichiometric layered nanocrystals are favored. Two different semiconductors were

considered by us for our study and both show the same behavior as a function of size. The

atom making up the terminating layer of the nanocrystal before passivation have been
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Figure 7.3: The (a) Se p projected partial density of states for a surface Se atom (having

a coordination of 1 with the Cd atoms) and (b) the H s projected partial density of states

for the pseudo-hydrogen attached to the surface Se atom in the case of a Se-centered

layered n=4 nanocrystal. The Fermi energy is set to zero.
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Figure 7.4: The (a) Cd s (solid line) and d (dashed line) projected partial density of states

for a surface Cd atom (having a coordination of 1 with the Se atoms) and (b) the H s

(dotted line) projected partial density of states for the pseudo-hydrogen attached to the

surface Cd atom in the case of a Se-centered layered n=5 nanocrystal. The Fermi energy

is set to zero.
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Figure 7.5: Variation of the formation energy per binary atom for the passivated binary

nanocrystals of GaAs and CdSe as a function of volume for the layered and spherical

nanocrystals under cation-rich (left panel) and anion-rich (right panel) conditions. In the

case of GaAs and CdSe, Ga and Se lie at the centers respectively. The type of atom that

forms the outermost layer in the case of the layered nanocrystals have been indicated.

indicated on the figure. Under cation-rich conditions we find that the formation energy

for cation terminated nanocrystals follow a different curve compared to that followed by

anion terminated nanocrystals. The former are significantly lower suggesting that under

cation-rich conditions one finds equilibrium growth conditions resulting in a particular

surface stoichiometry for the nanocrystals. Under anion-rich conditions both termination

types follow a single curve.

We then went on to consider the limit of unpassivated nanocrystals. Here, as shown in

Fig. 7.6 chemical potentials did not have such a strong effect on the type of nanocrystals

which were favored. Under both cation rich conditions as well as anion rich conditions

we found that stoichiometric nanocrystals were favored. These results have important
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Figure 7.6: Variation of the formation energy per binary atom for the unpassivated binary

nanocrystals of GaAs and CdSe as a function of volume for the layered and spherical

nanocrystals under cation-rich (left panel) and anion-rich (right panel) conditions. In the

case of GaAs and CdSe, Ga and Se lie at the centers respectively. The type of atom that

forms the outermost layer in the case of the layered nanocrystals have been indicated.
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implications on the growth of nanocrystals and their consequent properties. Firstly, it is

not always that one can find a suitable passivant for all atoms comprising the nanocrystal.

Hence, these results suggest that as a function of the strength of the passivant we have

a crossover from stoichiometric nanocrystals to highly non-stoichiometric nanocrystals.

While the most prevalent view of the role of the passivant is one of saturating dangling

bonds as well as arresting growth, there are indications from the literature [15] that the

passivant plays a complex role during growth. The results of Figs. 7.5 and 7.6 and

the subsequent analysis throws some light on this unidentified role of the passivating

molecules.

In order to understand the differences in the stability of the stoichiometric nanocrystals

as against the non-stoichiometric ones, we have examined the differences in their electronic

structure. Considering the layered CdSe nanocrystal with an Se atom at the center and

four layers around the central core (n=4), the surface layer is found to be made up of Se

atoms. These Se atoms could be 1-, 2- or 3- coordinated with the Cd atoms.

In Fig. 7.7 we have plotted the Se p projected partial density of states for the under-

coordinated surface Se atoms as well as inner Se atom located at the center (core) of the

nanocrystal. The centroid appears to be shifted towards lower energies for the surface Se

atom compared to the core Se atom. This can be understood as arising from the inter-

action between the pseudo-hydrogen atom belonging to the passivant and the Se p states

belonging to the Se atom at the surface. Here the shifting of the centroid towards lower

energy is more pronounced for the less coordinated Se atoms. A Se-terminated surface is

deficient in cations and the dangling bond states may be considered to be arising from

cation vacancies. These are known to be centered on the Se atoms surrounding the cation

vacancy. Hence when we passivate the dangling bonds with pseudo-hydrogen, the latter

atoms behave like a cation, interact with the Se p states and push them deeper into the

valence band. A similar analysis has been carried out for the Cd-terminated surface.

In Fig. 7.8 we have plotted the Cd s projected partial density of states for the surface

Cd atoms which have different coordination as well as inner Cd atom. For the less

coordinated Cd atoms we see that the centroid shifts towards lower energy compared to

the inner Cd atom. Here the passivant atoms behave like an anion, interacting with the
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well as at the surface having (b) double and (c) single coordination with the Cd atoms.

The zero of energy corresponds to the Fermi energy.
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Figure 7.8: The Cd s projected partial density of states for a Cd atom (a) in the first layer

as well as at the surface having (b) triple, (c) double and (d) single coordination with the

Se atoms. The inset in (d) shows the Cd s (solid line) states, belonging to a surface Cd

atom having single coordination with the Se atoms, and H s (dashed line) contribution

to the partial density of states corresponding to the passivating pseudo-hydrogen atom.

The zero of energy corresponds to the Fermi energy.
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Cd-centered dangling bond states forming bonding and antibonding states as the inset of

Fig. 7.8(d). There is substantial transfer of charge onto the passivant atom as a result of

the interaction.

Table. 7.1 shows the number of surface atoms and the type of coordination one has

for the different types of ’A’ centered layered and spherical binary ’AB’ nanocrystals

considered by us.

Table 7.1: Number (types of atom) of ’A’ centered binary nanocrystals.

Number of atoms with coordination % of single and double

1 2 3 4 coordinated atoms

Layered

n=1 4(B) - - 1(A) 80

n=2 12(A) - - 1(A),4(B) 71

n=3 12(B) 12(B) - 13(A),4(B) 59

n=4 24(A) 18(A) - 13(A),28(B) 51

n=5 24(B) 36(B) 4(B) 55(A),28(B) 41

Spherical

n=3 - 12(B) 12(A) 1(A),4(B) 41

n=4 - 6(A) 12(A),12(B) 1(A),4(B) 17

n=5 - 12(A),12(B) 12(A),16(B) 19(A),16(B) 28

n=6 - 24(A) 24(A),28(B) 31(A),40(B) 16

Examining the coordination of surface and bulk atoms in the layered nanocrystals

(Table. 7.1), we find that the percentage of undercoordinated (one and two coordinated)

atoms is larger for the layered nanocrystals than for the spherical nanocrystals. This

explains the unusual stability of the layered nanocrystals irrespective of their termination.

The next question we asked was how exactly could these theoretical predictions be

verified. In Ref. [16], Nanda et al. have used core-level spectroscopy to determine how

many structurally inequivalent types of Cd and S are there in their CdS nanocrystal. By

an analysis of the core-level photoemission spectrum, they arrived at the conclusion that

there were three inequivalent S species, while there was just one type of Cd atom in their

nanocrystal. The three S atoms are attributed to surface S, bulk S and another belonging
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Table 7.2: Variation of the average equilibrium lattice constant for the unpassivated

layered and spherical nanocrystals of GaAs and CdSe. In the case of GaAs and CdSe

nanocrystals, Ga and Se lie at the centers respectively.

Nanocrystal size (n) Average lattice constant (Å)

GaAs CdSe

layered 1 5.405 6.571

2 5.875 6.228

3 5.826 6.626

4 6.041 6.338

5 5.806 6.364

∞ 5.759 6.202

spherical 3 5.674 6.124

4 5.726 6.075

5 5.736 6.152

6 5.871 6.169

∞ 5.759 6.202

to the passivant molecule they use. These results are suggestive of a S-terminated surface

being realized. Further experiments of a similar kind may be used to verify our conjecture.

We go on to examine the limitations on the choice of a non-ideal passivant. An obvious

limitation of the non-ideal passivant is in the optical properties. In most cases defect states

are generated in the band gap as a result of unpassivated dangling bonds and these quench

the bulk band-edge transitions. An alternate consequence that we found in the course of

our calculations was in the evaluated equilibrium lattice constant. This is computed for

the nanocrystals by first performing a geometry optimization, and then averaging over

the nearest neighbor bond lengths. The averaged bond length is then converted to an

average lattice constant which we then compare with the bulk value. For the passivated

nanocrystals bulk-like equilibrium lattice constants were reached for the moderate sizes

(refer section 6.3.2). Also the lattice constants showed an almost monotonic increase with

size, approaching the bulk equilibrium lattice constant. In the case of the unpassivated

nanocrystals, a non-monotonic behavior of the lattice constant is found as a function of size

(Table. 7.2), with the lattice constant being larger than the bulk lattice constant for some



Chapter 7. Structural and electronic properties of semiconductors: bulk and nanoscale162

sizes. This larger deviations in the lattice constant arises for the unpassivated nanocrystals

as the perturbation effects are more. While in the case of passivated nanocrystals these

perturbation effects are reduced as the passivants saturates the dangling bonds that exist

at the surface of the nanocrystals. These results have implications on the experimental

studies where one might have different types of passivants and the role played by the

passivants is strongly reflected on the lattice constant of the nanocrystal. Our studies

show that a nanocrystal in presence of a strong passivant shows much less deviation

in the lattice constant from the bulk lattice constant compared to the case when the

nanocrystals are passivated by a weak passivant. Experimentally it has been observed

that the lattice constant is larger than the bulk lattice constant for some nanocrystals

[17]. This we believe is due to the use of weak passivant.

7.4 Conclusions

Passivated binary nanocrystals with only one kind of atoms are found to be favored

under certain experimental conditions. These are important from a technological point

of view for maximizing optical efficiency. A weak passivant on the other hand favor’s

the formation of spherical nanocrystals which although stoichiometric show significant

deviations from the average equilibrium lattice constant evaluated for similar sized well

passivated nanocrystals. This study reveals a new role played by passivant molecules.

In addition to their traditional role of saturating dangling bond states and arresting

growth and therefore preventing agglomeration of particles, here they also alter the surface

structure of the grown particles.
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Chapter 8

Optical properties of semiconductor nanocrystals

8.1 Can Nano Silicon be Made Optically Active?

8.1.1 Introduction

Silicon has been the workhorse of the electronic industry. With progress in the commu-

nications industry based on optoelectronic materials, efforts are on to integrate the two

and make a silicon based optoelectronic industry. Bulk Si is an indirect band gap ma-

terial and is therefore not a candidate. Efforts have been made to look for other forms

of silicon which might be optically active. Routes that have been taken include quantum

confinement of Si between SiO2 layers [1], porous silicon [2] as well as quantum dots /

nanosized particles of Si [3]. While the size dependence of the electronic structure and

therefore the optical properties is well-known for II-VI and II-IV semiconductors [4], the

exact mechanism by which the material is rendered optically active is still an enigma. This

is aggravated also by the experimental uncertainties arising from different growth meth-

ods giving different results. In this context theory which can simulate the ideal situation

can play an important role. Focusing on nanoparticles of Si, we examine how different

criteria for cutting out nanocrystals from bulk fragments can modify the degeneracies of

the conduction band minima. We examine whether this method of artificially modifying

the degeneracies renders silicon optically active.

1This section is based on the following paper:

R. Cherian, A. K. Nandy, and P. Mahadevan Can Nano Silicon be Made Optically Active? J.

Nanoscience and Nanotechnology, 9, 5561 (2009).
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8.1.2 Methodology

Here passivated layered and spherical nanocrystals, as discussed in section 6.1, were con-

sidered. For the studies here a plane wave cutoff of 500 eV has been used for the basis

states. It should be noted that for very small nanocrystal sizes, bulk-like coordination is

usually not reached and the nanocrystals have very different geometries and coordination

then what is found in bulk. However we are interested in nanocrystals with bulk-like

geometries usually attained in the larger size considered here. For the optimized struc-

ture we use the longitudinal length gauge of the electromagnetic field defined as used by

Adolph et al. [5] to evaluate the optical matrix elements.

A good test of any model is its ability to predict the physical properties. We have

considered the equilibrium lattice constant as our yardstick. For our optimized structure,

we average over all Si nearest neighbor bond-lengths to determine an average bond-length.

This is then translated into an equilibrium lattice constant. This is contrasted with

the value of the equilibrium lattice constant for bulk Si, which is found to be 5.407 Å

(refer section 6.2.2). This value is 0.44% smaller than the experimental lattice constant

and it is well known failure of these calculations resulting from the choice of exchange.

However the qualitative trends coming out of such calculations are usually reliable. In our

calculations for the largest nanocrystal considered here we obtain an average equilibrium

lattice constant of 5.392 Å (Ref. Table 6.3). Thus our nanocrystals seem to be reproducing

the values of nano Si quite well. We then went on to examine the physical properties of the

systems. Considering the band gap of the systems studied we found that the passivation

was efficient in every case and eliminated all mid gap defect states.

8.1.3 Results and Discussion

The band gap variation for the nanocrystal generated by the two methods discussed earlier

are given in Figs. 8.1 and 8.2 as a function of the volume of the nanocrystal. We define

the volume of the nanocrystal as the volume of the convex hull formed by the outermost

atoms. We next went on to examine whether the physical properties of two nanocrystals

with the same volume, but different shapes could be different. Considering the layered
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Figure 8.1: Variation of the band gap for Si nanocrystals, generated by layered growth

methods as a function of volume.

Figure 8.2: Variation of the band gap for Si nanocrystals, generated by spherical growth

methods as a function of volume.
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case, a 400 Å3 nanocrystal has a band gap of 3.25 eV, which is slightly larger than the

band gap (3.11 eV) of a spherical nanocrystal with the same volume. However, moving

to larger nanocrystals where the deviation in shape is greater, the deviations are much

larger. Hence different routes to synthesize nanoparticles could result in different physical

properties for similar sized particles.

We then went on to examine what the implications of the shape variations were on

the degeneracy of the lowest three conduction band states and the top two valence band

states. The degeneracies as well as the energies referenced to the valence band maximum

are given in Table 8.1 for the layered as well as the spherical cases. While the valence

band top’s degeneracy remains unchanged, we do find deviations in the degeneracy of the

conduction band bottom, which in some cases is singly degenerate and in some cases is

triply degenerate. The character of the singly degenerate state is found to be s character,

while that of the triply state is found to be p character. Bulk silicon is an indirect band

gap material in which the conduction band bottom is singly degenerate and lies along

GX direction. While at this juncture we cannot determine the exact symmetry of the

conduction band bottom, we can in principle examine whether the band gap transition is

optically active.

Evaluating the optical matrix elements, we still find that the oscillator strength of z

polarized light is negligibly small (Table 8.2), therefore indicating that manipulating the

degeneracy of the conduction band bottom as is artificially done here makes silicon very

slightly optically active.

8.1.4 Conclusion

For the various sizes of Si nanoparticles considered we see that the degeneracy of the

valence band maximum remains unchanged while we do find deviation in the degeneracy

of the conduction band minimum, which in some cases is singly degenerate and in some

cases its triply degenerate. From our studies we find that similar sized Si nanoparticles

with different shapes can have different band gaps. Optical matrix elements are found to

be smaller for larger Si nanocrystals while we see that smaller nanocrystals of Si becomes

slightly optically active.
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Table 8.1: The degeneracies of the highest two valence band (VB) states and lowest three

conduction band (CB) states as a function of nanocrystal size. The corresponding energies

(eV) given with respect to the valence band maximum.

Nanocrystal size (n) Degeneracy of Energy of top Energy of bottom

2 VB 3 CB

Top 2 Bottom 3

VB CB

Layered

4 3,3 3,1,2 -0.097,0.0 2.664,2.729,2.796

5 3,3 1,3,2 0.096,0.0 2.159, 2.186, 2.191

Spherical

3 3,3 1,2,3 0.237,0.0 3.483, 3.671, 3.751

4 3,3 1,3,2 0.138,0.0 3.389, 3.468, 3.497

5 2,3 1,3,2 0.259,0.0 2.428, 2.482, 2.502

6 3,3 3,2,1 0.066,0.0 2.149, 2.158, 2.169

8.2 Tuning of Dopant Emission in Mn2+-Doped CdS Nanocrys-

tals

8.2.1 Introduction

Size-dependent optical properties of II-VI semiconductor nanocrystals, for example, tun-

ing of emission color of CdSe nanocrystals across the visible range by tuning the particle

size, has been one of the most important topic of fundamental research [6] with obvious

technological applications. However, the utility of such intense emission for practical pur-

poses is somewhat hindered by the process of self-absorption in case of these excitonic

emissions with overlapping absorption and emission energies. It has been shown that,

doping transition metal ions, in particular Mn2+ ions, into these semiconductor nanocrys-

tals, gives rise to strong dopant-related emissions, at energies substantially lower than

the band gap [7]. Such a large stokes shift between the absorption and emission spectra,

overcome the vexing problem of self-absorption [8]. Also, doped nanocrystal emitters are
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Table 8.2: The oscillator strength of z-polarized light of different sized nanocrystal.
Nanocrystal size (n) Oscillator strength

Layered

4 2.09E-04

5 1.72E-04

Spherical

3 8.21E-04

4 2.44E-04

5 5.48E-04

6 2.96E-04

relatively less sensitive to thermal and photochemical disturbances compared to their un-

doped counterpart[9]. Based on these advantages, doped semiconductor nanocrystals has

been proven to be better phosphors in light emitting devices (LEDs)[8, 10] and nontoxic

biological labels [11]. In spite of these advantages, the most important disadvantage of

these doped nanocrystals is that, one cannot tune the emission color by tuning particle

size, unlike their undoped counterpart. In a typical Mn2+-doped II-VI semiconductor

nanocrystal, where Mn2+ doping introduces d-states into the band gap of the host semi-

conductor, the excitation takes place in the host nanocrystal, whereas the de-excitation

involves the dopant energy levels. Therefore, the emission energy is given by the en-

ergy difference between the first excited state and the ground state of Mn2+ d-states.

Since Mn2+ 3d states are essentially localized, atomic-like states, with characteristic or-

bital spread much smaller than the typical nanocrystal size, a change in the nanocrystal

size has no perceptible effect on emission energy of a given dopant in a semiconductor

nanocrystal host, leading to a near constancy of the emission energy from the dopant,

irrespective of the nanocrystal size. Thus, for a given system, such as Mn2+-doped CdS

nanocrystals, the energy for the Mn2+ d-emission is found to be constant at ∼ 2.13 eV

[10]. The only way one achieves different emission colors is by changing the transition

metal dopant ion[12]; however, this only allows few discrete emission colors, rather than

a near-continuous tunability over a range of wavelengths. However, there are a few ex-

ceptions in the literature [13, 14] where Mn2+ d-emission energy has been reported down

to 1.92 eV. In many of these reports, however, a strongly asymmetric emission spectrum,
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instead of a symmetric emission peak of Gaussian kind, has been observed, this being

attributed to overlapping of dopant emission with strong host related emissions [15, 16]

Therefore, it is not clear in such cases whether the intrinsic Mn2+ d-emission energy could

be altered.

Recently [17] it was found to be experimentally possible to tune Mn2+ d-emission

color from Mn2+-doped CdS nanocrystals, in the range of yellow to red by making slight

changes in the reaction temperature. Time-delayed emission spectra [8, 14] measuring

only Mn2+ d-emission with no contribution of host-related emissions provided them an

unambiguous evidence of this tunability involving only Mn2+ d-levels. Detailed analysis

of their experimental spectra coupled with our ab-initio theoretical studies have revealed

the microscopic origin of changes in the electronic structure responsible for this tunability

of emission energies. We establish that the Mn2+ ions residing at surface/sub-surface

regions experience a different crystal field compared to those residing at the core of the

nanocrystal, giving rise to subtle changes in the electronic structure at the transition metal

site; the difference in the relative contributions of these different kinds of Mn2+ species

to the overall spectrum gives rise to the tunability of the Mn2+ d-emissions. These new

understandings also provide a tool, and may be the only tool to obtain information about

the location of an emitting Mn2+ ion in the host nanocrystal.

8.2.2 Methodology

First principle structural optimization was carried out within a plane wave pseudopoten-

tial implementation of density functional theory to determine the bond-lengths between

Mn2+ ion and its anion neighbors. Spherical clusters were constructed (refer section 6.1)

retaining bulk-like coordination and a diameter of 2.2 nm, which is very similar to the

diameter of the experimentally synthesized nanocrystals. The unit cell containing the

nanocrystal was so defined as to have inter-nanocrystal separation equal to 10 Å, en-

suring negligible interactions between nanocrystals. The surface of the nanocrystal was

passivated with pseudo-hydrogens. Mn2+ ion was introduced to replace a Cd2+ ion at

the surface, sub-surface as well as at the core regions of the nanocrystal in separate cal-

culations. We use cut-off energy of 280 eV and a k-point mesh including only Gamma
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point. Full geometry optimization was carried out. The energy eigenvalues correspond-

ing to the Mn2+ induced levels were determined from an analysis of the character of the

wavefunction.

8.2.3 Results and Discussion

It was experimentally observed [17] that the emission color of Mn doped CdS nanoparticles

could be tuned from red to yellow by changing the reaction temperature. Analysis of the

emission peaks revealed a multi-component character. Three peaks were identified at

2.14, 2.01 and 1.86 eV and the changes in the reaction temperature changed the relative

intensities of the three features and hence brought about variations in the peak position.

They [17] observed the peak-I with maximum at 2.14 +/- 0.006 eV for all their samples,

which also matches well with the observed emission maximum in the corresponding bulk

samples [18], and is assigned to the Mn2+ ions situated at the Cd2+ substitutional site in

the interior of the nanocrystal. This interpretation is further supported by the fact that

they found an increase in the particle size from 1.9 to 2.6 nm, induced by an increase in

the reaction temperature from 55 to 130 oC, leads to a substantial increase in the relative

contribution of peak-I to the overall spectrum. Obviously, the larger particle has a smaller

surface to bulk ratio, leading to a higher probability of Mn2+ incorporation in the interior

of the nanocrystal than on its surface. In view of the Mn2+ emission for dopant in the core

region appearing at 2.14 eV, it is natural to expect the originating lower energy emissions

at 2.01 and 1.86 eV (peaks II and III) from different kinds of Mn2+ ions situated in

perturbed environments, namely near the surface/sub-surface regions of the nanocrystal.

In order to establish the above interpretations conclusively, we have carried out ab-

initio electronic structure calculations to determine d − d transition energies for Mn2+

ions residing at different locations in such an nanocrystal. Separate calculations were

carried out for the undoped nanocrystal and doped nanocrystals with one single Mn2+

ion introduced at the surface, sub-surface and the core of the CdS nanocrystal of size 2.2

nm. In each of these cases, the nanocrystal geometry was allowed to relax to minimize

the total energy. The energy minimization leads to all four Mn2+-S2− bond-lengths for

the case of core-doping to be 2.43 Å with a perfect tetrahedral symmetry. In contrast,
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for the sub-surface Mn2+ ion, MnS4 tetrahedral is found to be distorted with Mn2+-S2−

bond-lengths being 2.41, 2.41, 2.42 and 2.43 Å. Using the results of these calculations, we

extracted the 3d energy level diagram, as shown in Figs. 8.3 and 8.4 for d-levels of Mn2+

ions introduced at the core and sub-surface of the CdS nanocrystal, respectively, including

the crystal field splitting. In order to arrive at these energy level diagrams, the eigen-

vectors of different energy eigenvalues are analyzed for their symmetry, the dominant

atom type and angular momentum character. In the case of the Mn2+ ion at the core, the

doubly degenerate eigenvalues in the up-spin channel with dominantly Mn2+ character are

identified as the levels with e symmetry, while the triply degenerate levels with dominantly

Mn2+ character are identified as the Mn2+ levels with t2 symmetry, as shown in Fig. 8.3.

The distortion in the MnS4 tetrahedron near the surface region lifts the degeneracy of e

and t2 levels; this is further contributed by the presence of the terminating surface in the

close vicinity on only one side of the MnS4 unit, making the electronic potential even more

asymmetric with respect to the central Mn2+ ion. Following the lifting of the degeneracy,

the resulting Mn2+ d-level energy diagram is shown in Fig. 8.4. The splitting between the

up and down-spin energy levels are determined by the intra-atomic exchange interaction

strength as the Hunds coupling strength, JH , with the spin-up and spin-down states being

split by 4 JH .

Earlier analysis [19] of ab-initio band structure has estimated JH to be 0.8 eV for oxides.

We expect a slightly lower value of JH for the sulphides that form compounds with wider

bands than the oxides; we find JH = 0.7 eV to be more appropriate in the present case.

Thus the spin splitting in both Figs. 8.3 and 8.4 are shown to be 2.8 eV. Mn2+ ion with

five unpaired electrons defines the ground state as shown in the right hand side of Fig.

8.3, where all the up-spin e and t2 states are occupied, giving rise to total spin multiplicity

of 6. However for the 1st excited state, two up-spin e levels, two up-spin t2 levels and one

down-spin e level are occupied giving total spin multiplicity equal to 4, as shown in the left

hand side of Fig. 8.3. The d−d transition energy because of the transition from 1st excited

state to ground state in Fig. 8.3 is calculated to be 2.20 eV, in good agreement with the

experimentally observed transition energy for peak-I (2.14 eV). In passing, we note that a

JH value 0.68 eV will lead to a perfect agreement with the experimental value of 2.14 eV.

However, our concern here is to understand the underlying mechanism of the tunability of
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Figure 8.3: Schematic energy level diagrams showing the crystal field splitting of d-levels

for Mn2+ ions at the core of a CdS nanocrystal.

dopant emission, rather than obtaining perfect quantitative agreement by fine tuning the

parameter JH . Carrying out the same analysis for the near-surface distorted tetrahedral

case shown in Fig.8.4, we obtain the transition energy between 1st excited state and the

ground state to be 2.04 eV. This calculated transition energy matches very well with that

of peak-II (2.01 eV), thus, confirming the fact that peak-II originates from Mn2+ ions

residing in the sub-surface of these nanocrystals. In view of these results, we believe that

the third emission component with peak at 1.86 eV is from Mn2+ ions at the surface region

with a 1-thioglycerol capping, since this situation would provide an even more strongly

distorted crystal field and a consequent more emphatic lifting of the d-level degeneracies,

which is at the heart of red-shift from peak-I, to peak-II to peak-III. However, an ab-initio

calculation with such a large sized nanocrystal together with all flexibilities of capping

agents including geometry optimization is way beyond the computational infrastructure

available at present.
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Figure 8.4: Schematic energy level diagrams showing the crystal field splitting of d-levels

for Mn2+ ions at the sub-surface of a CdS nanocrystal. Dashed lines are just a guide to

eye showing the lifting of degeneracy of e and t2 levels.

8.2.4 Conclusion

Our results firmly establish the fact that Mn2+ ions residing at the interior and sub-surface

of an nanocrystal, exhibit shift in the emission due to a change in the crystal field leading

to a lifting of d-level degeneracies. Interestingly, each of these emission from three distinct

dopant sites are insensitive to the nanoparticle size, as should indeed be expected in view

of the atomic-like nature of transition metal d-levels.
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